home *** CD-ROM | disk | FTP | other *** search
/ Interactive Algebra & Tri…f Guided Study Companion / Interactive Algebra and Trigonometry - A Self-Guided Study Companion.iso / tutor / chap_2 / 2-3-3.tut < prev    next >
Unknown  |  1996-07-18  |  13.1 KB

open in: MacOS 8.1     |     Win98     |     DOS

view JSON data     |     view as text


This file was not able to be converted.
This format is not currently supported by dexvert.

ConfidenceProgramDetectionMatch TypeSupport
1% dexvert Eclipse Tutorial (other/eclipseTutorial) ext Unsupported
1% dexvert JuggleKrazy Tutorial (other/juggleKrazyTutorial) ext Unsupported
100% file data default
100% gt2 Kopftext: 'TUTOR 06(/' default (weak)



hex view
+--------+-------------------------+-------------------------+--------+--------+
|00000000| 54 55 54 4f 52 20 30 36 | 28 2f 00 00 67 05 00 00 |TUTOR 06|(/..g...|
|00000010| 00 17 4f 04 0d 0b 00 57 | 72 6f 6e 67 2e 20 20 49 |..O....W|rong. I|
|00000020| 74 20 61 70 70 65 61 72 | 73 20 74 68 61 74 20 79 |t appear|s that y|
|00000030| 6f 75 20 61 72 65 20 68 | 61 76 69 6e 67 20 74 72 |ou are h|aving tr|
|00000040| 6f 75 62 6c 65 20 77 69 | 74 68 20 74 68 65 20 64 |ouble wi|th the d|
|00000050| 65 66 69 6e 69 74 69 6f | 6e 73 20 6f 66 20 61 6e |efinitio|ns of an|
|00000060| 20 0d 0a 00 69 6e 63 72 | 65 61 73 69 6e 67 20 6f | ...incr|easing o|
|00000070| 72 20 64 65 63 72 65 61 | 73 69 6e 67 20 66 75 6e |r decrea|sing fun|
|00000080| 63 74 69 6f 6e 2e 20 20 | 59 6f 75 20 6d 61 79 20 |ction. |You may |
|00000090| 77 61 6e 74 20 74 6f 20 | 72 65 76 69 65 77 20 74 |want to |review t|
|000000a0| 68 65 73 65 20 74 65 72 | 6d 73 20 0d 0a 00 61 6e |hese ter|ms ...an|
|000000b0| 64 20 47 75 69 64 65 64 | 20 45 78 61 6d 70 6c 65 |d Guided| Example|
|000000c0| 20 33 20 62 65 66 6f 72 | 65 20 74 72 79 69 6e 67 | 3 befor|e trying|
|000000d0| 20 74 68 69 73 20 70 72 | 6f 62 6c 65 6d 20 61 67 | this pr|oblem ag|
|000000e0| 61 69 6e 2e 0d 0a 00 00 | 17 4f 04 0d 0b 00 57 72 |ain.....|.O....Wr|
|000000f0| 6f 6e 67 2e 20 20 54 68 | 65 20 66 75 6e 63 74 69 |ong. Th|e functi|
|00000100| 6f 6e 20 69 73 20 11 33 | 64 65 63 72 65 61 73 69 |on is .3|decreasi|
|00000110| 6e 67 20 11 31 6f 6e 20 | 74 68 65 20 69 6e 74 65 |ng .1on |the inte|
|00000120| 72 76 61 6c 20 28 30 2c | 20 32 29 20 61 6e 64 20 |rval (0,| 2) and |
|00000130| 11 33 69 6e 63 72 65 61 | 73 69 6e 67 20 11 31 6f |.3increa|sing .1o|
|00000140| 6e 0d 0a 00 74 68 65 20 | 69 6e 74 65 72 76 61 6c |n...the |interval|
|00000150| 73 20 28 2d 11 34 38 11 | 31 2c 20 30 29 20 61 6e |s (-.48.|1, 0) an|
|00000160| 64 20 28 32 2c 20 11 34 | 38 11 31 29 2e 0d 0a 00 |d (2, .4|8.1)....|
|00000170| 00 17 4f 04 0d 0b 00 57 | 72 6f 6e 67 2e 20 20 49 |..O....W|rong. I|
|00000180| 74 20 61 70 70 65 61 72 | 73 20 74 68 61 74 20 79 |t appear|s that y|
|00000190| 6f 75 20 61 72 65 20 68 | 61 76 69 6e 67 20 74 72 |ou are h|aving tr|
|000001a0| 6f 75 62 6c 65 20 77 69 | 74 68 20 74 68 65 20 64 |ouble wi|th the d|
|000001b0| 65 66 69 6e 69 74 69 6f | 6e 73 20 6f 66 20 61 6e |efinitio|ns of an|
|000001c0| 20 0d 0a 00 69 6e 63 72 | 65 61 73 69 6e 67 20 6f | ...incr|easing o|
|000001d0| 72 20 64 65 63 72 65 61 | 73 69 6e 67 20 66 75 6e |r decrea|sing fun|
|000001e0| 63 74 69 6f 6e 2e 20 20 | 59 6f 75 20 6d 61 79 20 |ction. |You may |
|000001f0| 77 61 6e 74 20 74 6f 20 | 72 65 76 69 65 77 20 74 |want to |review t|
|00000200| 68 65 73 65 20 74 65 72 | 6d 73 20 0d 0a 00 61 6e |hese ter|ms ...an|
|00000210| 64 20 47 75 69 64 65 64 | 20 45 78 61 6d 70 6c 65 |d Guided| Example|
|00000220| 20 33 20 62 65 66 6f 72 | 65 20 74 72 79 69 6e 67 | 3 befor|e trying|
|00000230| 20 74 68 69 73 20 70 72 | 6f 62 6c 65 6d 20 61 67 | this pr|oblem ag|
|00000240| 61 69 6e 2e 0d 0a 00 00 | 17 4f 04 0d 0b 00 52 69 |ain.....|.O....Ri|
|00000250| 67 68 74 2e 20 20 45 78 | 63 65 70 74 20 66 6f 72 |ght. Ex|cept for|
|00000260| 20 74 68 65 20 69 6e 74 | 65 72 76 61 6c 20 28 30 | the int|erval (0|
|00000270| 2c 20 32 29 2c 20 74 68 | 65 20 66 75 6e 63 74 69 |, 2), th|e functi|
|00000280| 6f 6e 20 69 73 20 69 6e | 63 72 65 61 73 69 6e 67 |on is in|creasing|
|00000290| 2e 0d 0a 00 00 17 4f 06 | 0d 0b 00 57 72 6f 6e 67 |......O.|...Wrong|
|000002a0| 2e 20 20 49 66 20 11 33 | 67 11 31 28 11 33 78 11 |. If .3|g.1(.3x.|
|000002b0| 31 29 20 69 73 20 65 76 | 65 6e 2c 20 74 68 65 6e |1) is ev|en, then|
|000002c0| 20 11 33 67 11 31 28 2d | 11 33 78 11 31 29 20 3d | .3g.1(-|.3x.1) =|
|000002d0| 20 11 33 67 11 31 28 11 | 33 78 11 31 29 2e 20 20 | .3g.1(.|3x.1). |
|000002e0| 12 30 0d 0a 00 20 20 20 | 20 20 20 20 20 20 20 20 |.0... | |
|000002f0| 20 20 20 20 20 20 20 11 | 32 33 20 20 20 20 20 20 | .|23 |
|00000300| 20 20 20 20 20 20 20 20 | 33 0d 0b 00 20 20 20 20 | |3... |
|00000310| 20 11 33 67 11 31 28 2d | 11 33 78 11 31 29 20 3d | .3g.1(-|.3x.1) =|
|00000320| 20 32 28 2d 11 33 78 11 | 31 29 20 20 2d 20 33 28 | 2(-.3x.|1) - 3(|
|00000330| 2d 11 33 78 11 31 29 20 | 3d 20 2d 32 11 33 78 20 |-.3x.1) |= -2.3x |
|00000340| 20 11 31 2b 20 33 11 33 | 78 20 20 20 20 20 20 20 | .1+ 3.3|x |
|00000350| 20 20 20 11 31 0d 0a 00 | 20 20 20 20 20 20 20 20 | .1...| |
|00000360| 20 20 20 20 20 20 20 20 | 11 32 33 0d 0b 00 11 31 | |.23....1|
|00000370| 53 69 6e 63 65 20 11 33 | 67 11 31 28 11 33 78 11 |Since .3|g.1(.3x.|
|00000380| 31 29 20 11 34 3d 20 11 | 31 2d 32 11 33 78 20 20 |1) .4= .|1-2.3x |
|00000390| 11 31 2b 20 33 11 33 78 | 11 31 2c 20 77 65 20 63 |.1+ 3.3x|.1, we c|
|000003a0| 6f 6e 63 6c 75 64 65 20 | 74 68 61 74 20 74 68 65 |onclude |that the|
|000003b0| 20 66 75 6e 63 74 69 6f | 6e 20 69 73 20 6e 6f 74 | functio|n is not|
|000003c0| 20 65 76 65 6e 2e 0d 0a | 00 00 17 4f 04 0d 0b 00 | even...|...O....|
|000003d0| 52 69 67 68 74 2e 20 20 | 53 69 6e 63 65 20 11 33 |Right. |Since .3|
|000003e0| 67 11 31 28 2d 11 33 78 | 11 31 29 20 3d 20 2d 11 |g.1(-.3x|.1) = -.|
|000003f0| 33 67 11 31 28 11 33 78 | 11 31 29 2c 20 77 65 20 |3g.1(.3x|.1), we |
|00000400| 63 6f 6e 63 6c 75 64 65 | 20 74 68 61 74 20 74 68 |conclude| that th|
|00000410| 65 20 66 75 6e 63 74 69 | 6f 6e 20 69 73 20 6f 64 |e functi|on is od|
|00000420| 64 2e 20 12 30 0d 0a 00 | 20 20 20 20 20 20 20 20 |d. .0...| |
|00000430| 20 20 20 20 20 20 20 20 | 20 20 11 32 33 20 20 20 | | .23 |
|00000440| 20 20 20 20 20 20 20 20 | 20 20 20 33 20 20 20 20 | | 3 |
|00000450| 20 20 20 20 20 20 20 20 | 33 0d 0b 00 20 20 20 20 | |3... |
|00000460| 20 11 33 67 11 31 28 2d | 11 33 78 11 31 29 20 3d | .3g.1(-|.3x.1) =|
|00000470| 20 32 28 2d 11 33 78 11 | 31 29 20 20 2d 20 33 28 | 2(-.3x.|1) - 3(|
|00000480| 2d 11 33 78 11 31 29 20 | 3d 20 2d 32 11 33 78 20 |-.3x.1) |= -2.3x |
|00000490| 20 11 31 2b 20 33 11 33 | 78 20 11 31 3d 20 2d 28 | .1+ 3.3|x .1= -(|
|000004a0| 32 11 33 78 20 20 11 31 | 2d 20 33 11 33 78 11 31 |2.3x .1|- 3.3x.1|
|000004b0| 29 20 3d 20 2d 11 33 67 | 11 31 28 11 33 78 11 31 |) = -.3g|.1(.3x.1|
|000004c0| 29 0d 0a 00 00 17 4f 08 | 0d 0b 00 57 72 6f 6e 67 |).....O.|...Wrong|
|000004d0| 2e 20 20 49 66 20 11 33 | 67 11 31 28 11 33 78 11 |. If .3|g.1(.3x.|
|000004e0| 31 29 20 69 73 20 65 76 | 65 6e 2c 20 74 68 65 6e |1) is ev|en, then|
|000004f0| 20 11 33 67 11 31 28 2d | 11 33 78 11 31 29 20 3d | .3g.1(-|.3x.1) =|
|00000500| 20 11 33 67 11 31 28 11 | 33 78 11 31 29 2e 20 20 | .3g.1(.|3x.1). |
|00000510| 12 30 0d 0a 00 20 20 20 | 20 20 20 20 20 20 20 20 |.0... | |
|00000520| 20 20 20 20 20 20 20 11 | 32 33 20 20 20 20 20 20 | .|23 |
|00000530| 20 20 20 20 20 20 20 20 | 33 0d 0b 00 20 20 20 20 | |3... |
|00000540| 20 11 33 67 11 31 28 2d | 11 33 78 11 31 29 20 3d | .3g.1(-|.3x.1) =|
|00000550| 20 32 28 2d 11 33 78 11 | 31 29 20 20 2d 20 33 28 | 2(-.3x.|1) - 3(|
|00000560| 2d 11 33 78 11 31 29 20 | 3d 20 2d 32 11 33 78 20 |-.3x.1) |= -2.3x |
|00000570| 20 11 31 2b 20 33 11 33 | 78 20 20 20 20 20 20 20 | .1+ 3.3|x |
|00000580| 20 20 20 11 31 0d 0a 00 | 20 20 20 20 20 20 20 20 | .1...| |
|00000590| 20 20 20 20 20 20 20 20 | 11 32 33 0d 0b 00 11 31 | |.23....1|
|000005a0| 53 69 6e 63 65 20 11 33 | 67 11 31 28 11 33 78 11 |Since .3|g.1(.3x.|
|000005b0| 31 29 20 11 34 3d 20 11 | 31 2d 32 11 33 78 20 20 |1) .4= .|1-2.3x |
|000005c0| 11 31 2b 20 33 11 33 78 | 11 31 2c 20 77 65 20 63 |.1+ 3.3x|.1, we c|
|000005d0| 6f 6e 63 6c 75 64 65 20 | 74 68 61 74 20 74 68 65 |onclude |that the|
|000005e0| 20 66 75 6e 63 74 69 6f | 6e 20 69 73 20 6e 6f 74 | functio|n is not|
|000005f0| 20 65 76 65 6e 2e 20 20 | 48 6f 77 65 76 65 72 2c | even. |However,|
|00000600| 0d 0a 00 73 69 6e 63 65 | 20 11 33 67 11 31 28 2d |...since| .3g.1(-|
|00000610| 11 33 78 11 31 29 20 3d | 20 2d 11 33 67 11 31 28 |.3x.1) =| -.3g.1(|
|00000620| 11 33 78 11 31 29 20 28 | 73 65 65 20 62 65 6c 6f |.3x.1) (|see belo|
|00000630| 77 29 2c 20 77 65 20 63 | 6f 6e 63 6c 75 64 65 20 |w), we c|onclude |
|00000640| 74 68 61 74 20 74 68 65 | 20 66 75 6e 63 74 69 6f |that the| functio|
|00000650| 6e 20 69 73 20 6f 64 64 | 2e 12 30 0d 0a 00 20 20 |n is odd|..0... |
|00000660| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000670| 11 32 33 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.23 | |
|00000680| 20 33 20 20 20 20 20 20 | 20 20 20 20 20 20 33 0d | 3 | 3.|
|00000690| 0b 00 20 20 20 20 20 11 | 33 67 11 31 28 2d 11 33 |.. .|3g.1(-.3|
|000006a0| 78 11 31 29 20 3d 20 32 | 28 2d 11 33 78 11 31 29 |x.1) = 2|(-.3x.1)|
|000006b0| 20 20 2d 20 33 28 2d 11 | 33 78 11 31 29 20 3d 20 | - 3(-.|3x.1) = |
|000006c0| 2d 32 11 33 78 20 20 11 | 31 2b 20 33 11 33 78 20 |-2.3x .|1+ 3.3x |
|000006d0| 11 31 3d 20 2d 28 32 11 | 33 78 20 20 11 31 2d 20 |.1= -(2.|3x .1- |
|000006e0| 33 11 33 78 11 31 29 20 | 3d 20 2d 11 33 67 11 31 |3.3x.1) |= -.3g.1|
|000006f0| 28 11 33 78 11 31 29 0d | 0a 00 00 17 4f 04 0d 0b |(.3x.1).|....O...|
|00000700| 00 57 72 6f 6e 67 2e 20 | 20 53 69 6e 63 65 20 11 |.Wrong. | Since .|
|00000710| 33 67 11 31 28 2d 11 33 | 78 11 31 29 20 3d 20 2d |3g.1(-.3|x.1) = -|
|00000720| 11 33 67 11 31 28 11 33 | 78 11 31 29 2c 20 77 65 |.3g.1(.3|x.1), we|
|00000730| 20 63 6f 6e 63 6c 75 64 | 65 20 74 68 61 74 20 74 | conclud|e that t|
|00000740| 68 65 20 66 75 6e 63 74 | 69 6f 6e 20 69 73 20 6f |he funct|ion is o|
|00000750| 64 64 2e 20 12 30 0d 0a | 00 20 20 20 20 20 20 20 |dd. .0..|. |
|00000760| 20 20 20 20 20 20 20 20 | 20 20 20 11 32 33 20 20 | | .23 |
|00000770| 20 20 20 20 20 20 20 20 | 20 20 20 20 33 20 20 20 | | 3 |
|00000780| 20 20 20 20 20 20 20 20 | 20 33 0d 0b 00 20 20 20 | | 3... |
|00000790| 20 20 11 33 67 11 31 28 | 2d 11 33 78 11 31 29 20 | .3g.1(|-.3x.1) |
|000007a0| 3d 20 32 28 2d 11 33 78 | 11 31 29 20 20 2d 20 33 |= 2(-.3x|.1) - 3|
|000007b0| 28 2d 11 33 78 11 31 29 | 20 3d 20 2d 32 11 33 78 |(-.3x.1)| = -2.3x|
|000007c0| 20 20 11 31 2b 20 33 11 | 33 78 20 11 31 3d 20 2d | .1+ 3.|3x .1= -|
|000007d0| 28 32 11 33 78 20 20 11 | 31 2d 20 33 11 33 78 11 |(2.3x .|1- 3.3x.|
|000007e0| 31 29 20 3d 20 2d 11 33 | 67 11 31 28 11 33 78 11 |1) = -.3|g.1(.3x.|
|000007f0| 31 29 0d 0a 00 00 17 4f | 04 0d 0b 00 52 69 67 68 |1).....O|....Righ|
|00000800| 74 2e 20 20 54 68 65 20 | 67 72 61 70 68 20 6f 66 |t. The |graph of|
|00000810| 20 74 68 69 73 20 66 75 | 6e 63 74 69 6f 6e 20 69 | this fu|nction i|
|00000820| 73 20 73 79 6d 6d 65 74 | 72 69 63 20 77 69 74 68 |s symmet|ric with|
|00000830| 20 72 65 73 70 65 63 74 | 20 74 6f 20 74 68 65 20 | respect| to the |
|00000840| 11 33 79 11 31 2d 61 78 | 69 73 2e 0d 0a 00 00 17 |.3y.1-ax|is......|
|00000850| 4f 04 0d 0b 00 4e 6f 2e | 20 20 54 68 65 20 67 72 |O....No.| The gr|
|00000860| 61 70 68 20 69 73 20 63 | 6f 72 72 65 63 74 2c 20 |aph is c|orrect, |
|00000870| 62 75 74 20 74 68 65 20 | 66 75 6e 63 74 69 6f 6e |but the |function|
|00000880| 20 69 73 20 6e 6f 74 20 | 6f 64 64 2e 20 20 52 65 | is not |odd. Re|
|00000890| 6d 65 6d 62 65 72 20 74 | 68 61 74 20 74 68 65 20 |member t|hat the |
|000008a0| 0d 0a 00 67 72 61 70 68 | 20 6f 66 20 61 6e 20 6f |...graph| of an o|
|000008b0| 64 64 20 66 75 6e 63 74 | 69 6f 6e 20 69 73 20 73 |dd funct|ion is s|
|000008c0| 79 6d 6d 65 74 72 69 63 | 20 77 69 74 68 20 72 65 |ymmetric| with re|
|000008d0| 73 70 65 63 74 20 74 6f | 20 74 68 65 20 6f 72 69 |spect to| the ori|
|000008e0| 67 69 6e 2e 0d 0a 00 00 | 17 4f 04 0d 0b 00 4e 6f |gin.....|.O....No|
|000008f0| 2e 20 20 54 68 65 20 67 | 72 61 70 68 20 69 73 20 |. The g|raph is |
|00000900| 63 6f 72 72 65 63 74 2e | 20 20 48 6f 77 65 76 65 |correct.| Howeve|
|00000910| 72 2c 20 73 69 6e 63 65 | 20 74 68 65 20 67 72 61 |r, since| the gra|
|00000920| 70 68 20 69 73 20 73 79 | 6d 6d 65 74 72 69 63 20 |ph is sy|mmetric |
|00000930| 77 69 74 68 0d 0a 00 72 | 65 73 70 65 63 74 20 74 |with...r|espect t|
|00000940| 6f 20 74 68 65 20 11 33 | 79 11 31 2d 61 78 69 73 |o the .3|y.1-axis|
|00000950| 2c 20 74 68 65 20 66 75 | 6e 63 74 69 6f 6e 20 69 |, the fu|nction i|
|00000960| 73 20 65 76 65 6e 2e 0d | 0a 00 00 17 4f 04 0d 0b |s even..|....O...|
|00000970| 00 57 72 6f 6e 67 2e 20 | 20 4f 6e 65 20 6f 66 20 |.Wrong. | One of |
|00000980| 74 68 65 20 61 62 6f 76 | 65 20 69 73 20 63 6f 72 |the abov|e is cor|
|00000990| 72 65 63 74 2e 20 20 54 | 72 79 20 61 67 61 69 6e |rect. T|ry again|
|000009a0| 2e 0d 0a 00 00 17 4f 03 | 0d 0b 00 57 72 6f 6e 67 |......O.|...Wrong|
|000009b0| 2e 20 20 54 68 69 73 20 | 69 73 20 6e 6f 74 20 74 |. This |is not t|
|000009c0| 68 65 20 67 72 61 70 68 | 20 6f 66 20 74 68 65 20 |he graph| of the |
|000009d0| 66 75 6e 63 74 69 6f 6e | 2e 20 20 52 65 76 69 65 |function|. Revie|
|000009e0| 77 20 49 6e 74 65 67 72 | 61 74 65 64 20 45 78 61 |w Integr|ated Exa|
|000009f0| 6d 70 6c 65 20 32 0d 0a | 00 62 65 66 6f 72 65 20 |mple 2..|.before |
|00000a00| 74 72 79 69 6e 67 20 74 | 68 69 73 20 70 72 6f 62 |trying t|his prob|
|00000a10| 6c 65 6d 20 61 67 61 69 | 6e 2e 0d 0a 00 00 17 4f |lem agai|n......O|
|00000a20| 03 0d 0b 00 52 69 67 68 | 74 2e 20 20 54 68 65 20 |....Righ|t. The |
|00000a30| 66 75 6e 63 74 69 6f 6e | 20 69 73 20 73 79 6d 6d |function| is symm|
|00000a40| 65 74 72 69 63 20 77 69 | 74 68 20 72 65 73 70 65 |etric wi|th respe|
|00000a50| 63 74 20 74 6f 20 74 68 | 65 20 6f 72 69 67 69 6e |ct to th|e origin|
|00000a60| 2e 0d 0a 00 00 17 4f 03 | 0d 0b 00 57 72 6f 6e 67 |......O.|...Wrong|
|00000a70| 2e 20 20 54 68 69 73 20 | 69 73 20 6e 6f 74 20 74 |. This |is not t|
|00000a80| 68 65 20 67 72 61 70 68 | 20 6f 66 20 74 68 65 20 |he graph| of the |
|00000a90| 66 75 6e 63 74 69 6f 6e | 2e 20 20 52 65 76 69 65 |function|. Revie|
|00000aa0| 77 20 49 6e 74 65 67 72 | 61 74 65 64 20 45 78 61 |w Integr|ated Exa|
|00000ab0| 6d 70 6c 65 20 32 0d 0a | 00 62 65 66 6f 72 65 20 |mple 2..|.before |
|00000ac0| 74 72 79 69 6e 67 20 74 | 68 69 73 20 70 72 6f 62 |trying t|his prob|
|00000ad0| 6c 65 6d 20 61 67 61 69 | 6e 2e 0d 0a 00 00 17 4f |lem agai|n......O|
|00000ae0| 03 0d 0b 00 57 72 6f 6e | 67 2e 20 20 4f 6e 65 20 |....Wron|g. One |
|00000af0| 6f 66 20 74 68 65 20 61 | 62 6f 76 65 20 69 73 20 |of the a|bove is |
|00000b00| 63 6f 72 72 65 63 74 2e | 20 20 54 72 79 20 61 67 |correct.| Try ag|
|00000b10| 61 69 6e 2e 0d 0a 00 00 | 17 4f 05 0d 0b 00 57 72 |ain.....|.O....Wr|
|00000b20| 6f 6e 67 2e 20 20 54 68 | 69 73 20 69 73 20 6e 6f |ong. Th|is is no|
|00000b30| 74 20 74 68 65 20 63 6f | 72 72 65 63 74 20 67 72 |t the co|rrect gr|
|00000b40| 61 70 68 2e 20 20 49 74 | 20 61 70 70 65 61 72 73 |aph. It| appears|
|00000b50| 20 74 68 61 74 20 79 6f | 75 20 67 72 61 70 68 65 | that yo|u graphe|
|00000b60| 64 20 0d 0a 00 11 33 66 | 11 31 28 11 33 78 11 31 |d ....3f|.1(.3x.1|
|00000b70| 29 20 3d 20 11 33 78 20 | 11 31 2b 20 33 20 66 6f |) = .3x |.1+ 3 fo|
|00000b80| 72 20 11 33 78 20 11 34 | 3c 20 11 31 30 2e 20 20 |r .3x .4|< .10. |
|00000b90| 46 6f 72 20 30 20 3c 20 | 11 33 78 20 11 34 3c 20 |For 0 < |.3x .4< |
|00000ba0| 11 31 32 2c 20 67 72 61 | 70 68 20 74 68 65 20 63 |.12, gra|ph the c|
|00000bb0| 6f 6e 73 74 61 6e 74 20 | 66 75 6e 63 74 69 6f 6e |onstant |function|
|00000bc0| 20 0d 0a 00 11 33 66 11 | 31 28 11 33 78 11 31 29 | ....3f.|1(.3x.1)|
|00000bd0| 20 3d 20 33 2e 20 20 46 | 6f 72 20 11 33 78 20 11 | = 3. F|or .3x .|
|00000be0| 31 3e 20 32 2c 20 67 72 | 61 70 68 20 11 33 66 11 |1> 2, gr|aph .3f.|
|00000bf0| 31 28 11 33 78 11 31 29 | 20 3d 20 32 11 33 78 20 |1(.3x.1)| = 2.3x |
|00000c00| 11 31 2d 20 31 2e 20 20 | 54 72 79 20 61 67 61 69 |.1- 1. |Try agai|
|00000c10| 6e 2e 0d 0a 00 00 17 4f | 05 0d 0b 00 57 72 6f 6e |n......O|....Wron|
|00000c20| 67 2e 20 20 54 68 69 73 | 20 69 73 20 6e 6f 74 20 |g. This| is not |
|00000c30| 74 68 65 20 63 6f 72 72 | 65 63 74 20 67 72 61 70 |the corr|ect grap|
|00000c40| 68 2e 20 20 46 6f 72 20 | 11 33 78 20 11 34 3c 20 |h. For |.3x .4< |
|00000c50| 11 31 30 2c 20 67 72 61 | 70 68 20 11 33 66 11 31 |.10, gra|ph .3f.1|
|00000c60| 28 11 33 78 11 31 29 20 | 3d 20 11 33 78 20 11 31 |(.3x.1) |= .3x .1|
|00000c70| 2b 20 33 2e 20 20 0d 0a | 00 46 6f 72 20 30 20 3c |+ 3. ..|.For 0 <|
|00000c80| 20 11 33 78 20 11 34 3c | 20 11 31 32 2c 20 67 72 | .3x .4<| .12, gr|
|00000c90| 61 70 68 20 74 68 65 20 | 63 6f 6e 73 74 61 6e 74 |aph the |constant|
|00000ca0| 20 66 75 6e 63 74 69 6f | 6e 20 11 33 66 11 31 28 | functio|n .3f.1(|
|00000cb0| 11 33 78 11 31 29 20 3d | 20 33 2e 20 20 46 6f 72 |.3x.1) =| 3. For|
|00000cc0| 20 11 33 78 20 11 31 3e | 20 32 2c 20 67 72 61 70 | .3x .1>| 2, grap|
|00000cd0| 68 20 0d 0a 00 11 33 66 | 11 31 28 11 33 78 11 31 |h ....3f|.1(.3x.1|
|00000ce0| 29 20 3d 20 32 11 33 78 | 20 11 31 2d 20 31 2e 20 |) = 2.3x| .1- 1. |
|00000cf0| 20 54 72 79 20 61 67 61 | 69 6e 2e 0d 0a 00 00 17 | Try aga|in......|
|00000d00| 4f 03 0d 0b 00 52 69 67 | 68 74 2e 20 20 54 68 69 |O....Rig|ht. Thi|
|00000d10| 73 20 66 75 6e 63 74 69 | 6f 6e 20 69 73 20 6e 65 |s functi|on is ne|
|00000d20| 69 74 68 65 72 20 65 76 | 65 6e 20 6e 6f 72 20 6f |ither ev|en nor o|
|00000d30| 64 64 2e 0d 0a 00 00 17 | 4f 03 0d 0b 00 57 72 6f |dd......|O....Wro|
|00000d40| 6e 67 2e 20 20 4f 6e 65 | 20 6f 66 20 74 68 65 20 |ng. One| of the |
|00000d50| 61 62 6f 76 65 20 69 73 | 20 63 6f 72 72 65 63 74 |above is| correct|
|00000d60| 2e 20 20 54 72 79 20 61 | 67 61 69 6e 2e 0d 0a 00 |. Try a|gain....|
|00000d70| 00 17 4f 06 20 20 20 20 | 20 20 20 20 20 20 20 20 |..O. | |
|00000d80| 20 20 20 20 20 20 20 20 | 20 11 34 5b 32 20 20 20 | | .4[2 |
|00000d90| 20 20 20 20 32 5d 0d 0b | 00 11 31 57 72 6f 6e 67 | 2]..|..1Wrong|
|00000da0| 2e 20 20 54 68 65 20 66 | 75 6e 63 74 69 6f 6e 20 |. The f|unction |
|00000db0| 11 34 21 21 20 11 33 78 | 20 11 31 2d 20 31 20 11 |.4!! .3x| .1- 1 .|
|00000dc0| 34 21 21 20 11 31 69 73 | 20 74 68 65 20 67 72 65 |4!! .1is| the gre|
|00000dd0| 61 74 65 73 74 20 69 6e | 74 65 67 65 72 20 66 75 |atest in|teger fu|
|00000de0| 6e 63 74 69 6f 6e 20 61 | 6e 64 20 69 74 73 20 0d |nction a|nd its .|
|00000df0| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00000e00| 20 20 20 20 20 20 20 11 | 34 6c 32 20 20 20 20 20 | .|4l2 |
|00000e10| 20 20 32 6a 0d 0a 00 11 | 31 67 72 61 70 68 20 69 | 2j....|1graph i|
|00000e20| 73 20 6e 6f 74 20 61 20 | 6c 69 6e 65 2e 20 20 52 |s not a |line. R|
|00000e30| 65 76 69 65 77 20 47 75 | 69 64 65 64 20 45 78 61 |eview Gu|ided Exa|
|00000e40| 6d 70 6c 65 20 34 20 61 | 6e 64 20 74 68 65 6e 20 |mple 4 a|nd then |
|00000e50| 74 72 79 20 74 68 69 73 | 20 70 72 6f 62 6c 65 6d |try this| problem|
|00000e60| 0d 0a 00 0d 0b 00 61 67 | 61 69 6e 2e 0d 0a 00 00 |......ag|ain.....|
|00000e70| 17 4f 06 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.O. | |
|00000e80| 20 20 20 20 20 20 20 20 | 11 34 5b 32 20 20 20 20 | |.4[2 |
|00000e90| 20 20 20 32 5d 0d 0b 00 | 11 31 57 72 6f 6e 67 2e | 2]...|.1Wrong.|
|00000ea0| 20 20 54 68 65 20 66 75 | 6e 63 74 69 6f 6e 20 11 | The fu|nction .|
|00000eb0| 34 21 21 20 11 33 78 20 | 11 31 2d 20 31 20 11 34 |4!! .3x |.1- 1 .4|
|00000ec0| 21 21 20 11 31 69 73 20 | 74 68 65 20 67 72 65 61 |!! .1is |the grea|
|00000ed0| 74 65 73 74 20 69 6e 74 | 65 67 65 72 20 66 75 6e |test int|eger fun|
|00000ee0| 63 74 69 6f 6e 20 61 6e | 64 20 69 74 73 20 0d 0b |ction an|d its ..|
|00000ef0| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00000f00| 20 20 20 20 20 20 11 34 | 6c 32 20 20 20 20 20 20 | .4|l2 |
|00000f10| 20 32 6a 0d 0a 00 11 31 | 67 72 61 70 68 20 69 73 | 2j....1|graph is|
|00000f20| 20 6e 6f 74 20 61 20 63 | 75 72 76 65 2e 20 20 52 | not a c|urve. R|
|00000f30| 65 76 69 65 77 20 47 75 | 69 64 65 64 20 45 78 61 |eview Gu|ided Exa|
|00000f40| 6d 70 6c 65 20 34 20 61 | 6e 64 20 74 68 65 6e 20 |mple 4 a|nd then |
|00000f50| 74 72 79 20 74 68 69 73 | 20 70 72 6f 62 6c 65 6d |try this| problem|
|00000f60| 0d 0a 00 0d 0b 00 61 67 | 61 69 6e 2e 0d 0a 00 00 |......ag|ain.....|
|00000f70| 17 4f 04 0d 0b 00 52 69 | 67 68 74 2e 20 20 59 6f |.O....Ri|ght. Yo|
|00000f80| 75 20 73 6b 65 74 63 68 | 65 64 20 74 68 65 20 67 |u sketch|ed the g|
|00000f90| 72 61 70 68 20 6f 66 20 | 74 68 65 20 67 69 76 65 |raph of |the give|
|00000fa0| 6e 20 67 72 65 61 74 65 | 73 74 20 69 6e 74 65 67 |n greate|st integ|
|00000fb0| 65 72 20 66 75 6e 63 74 | 69 6f 6e 20 0d 0a 00 63 |er funct|ion ...c|
|00000fc0| 6f 72 72 65 63 74 6c 79 | 2e 0d 0a 00 00 17 4f 04 |orrectly|......O.|
|00000fd0| 0d 0b 00 57 72 6f 6e 67 | 2e 20 20 4f 6e 65 20 6f |...Wrong|. One o|
|00000fe0| 66 20 74 68 65 20 61 62 | 6f 76 65 20 69 73 20 63 |f the ab|ove is c|
|00000ff0| 6f 72 72 65 63 74 2e 20 | 20 54 72 79 20 61 67 61 |orrect. | Try aga|
|00001000| 69 6e 2e 0d 0a 00 00 17 | 4f 04 0d 0b 00 57 72 6f |in......|O....Wro|
|00001010| 6e 67 2e 20 20 54 68 65 | 20 67 72 61 70 68 20 6f |ng. The| graph o|
|00001020| 66 20 74 68 69 73 20 66 | 75 6e 63 74 69 6f 6e 20 |f this f|unction |
|00001030| 69 73 20 6e 6f 74 20 61 | 20 73 74 72 61 69 67 68 |is not a| straigh|
|00001040| 74 20 6c 69 6e 65 2e 20 | 20 59 6f 75 20 6d 61 79 |t line. | You may|
|00001050| 20 77 61 6e 74 0d 0a 00 | 74 6f 20 72 65 76 69 65 | want...|to revie|
|00001060| 77 20 49 6e 74 65 67 72 | 61 74 65 64 20 45 78 61 |w Integr|ated Exa|
|00001070| 6d 70 6c 65 20 34 2e 0d | 0a 00 00 17 4f 04 0d 0b |mple 4..|....O...|
|00001080| 00 52 69 67 68 74 2e 20 | 20 54 68 65 20 67 72 61 |.Right. | The gra|
|00001090| 70 68 20 6f 66 20 74 68 | 69 73 20 66 75 6e 63 74 |ph of th|is funct|
|000010a0| 69 6f 6e 20 69 73 20 70 | 6f 73 74 69 76 65 20 66 |ion is p|ostive f|
|000010b0| 6f 72 20 61 6c 6c 20 72 | 65 61 6c 20 76 61 6c 75 |or all r|eal valu|
|000010c0| 65 73 20 6f 66 20 11 33 | 78 11 31 2e 0d 0a 00 00 |es of .3|x.1.....|
|000010d0| 17 4f 04 0d 0b 00 57 72 | 6f 6e 67 2e 20 20 54 68 |.O....Wr|ong. Th|
|000010e0| 65 20 67 72 61 70 68 20 | 6f 66 20 74 68 69 73 20 |e graph |of this |
|000010f0| 66 75 6e 63 74 69 6f 6e | 20 64 6f 65 73 20 6e 6f |function| does no|
|00001100| 74 20 70 61 73 73 20 74 | 68 72 6f 75 67 68 20 74 |t pass t|hrough t|
|00001110| 68 65 20 6f 72 69 67 69 | 6e 2e 20 20 54 72 79 0d |he origi|n. Try.|
|00001120| 0a 00 61 67 61 69 6e 2e | 0d 0a 00 00 17 4f 04 0d |..again.|.....O..|
|00001130| 0b 00 57 72 6f 6e 67 2e | 20 20 4f 6e 65 20 6f 66 |..Wrong.| One of|
|00001140| 20 74 68 65 20 61 62 6f | 76 65 20 69 73 20 63 6f | the abo|ve is co|
|00001150| 72 72 65 63 74 2e 20 20 | 54 72 79 20 61 67 61 69 |rrect. |Try agai|
|00001160| 6e 2e 0d 0a 00 00 17 4f | 04 0d 0b 00 4e 6f 2e 20 |n......O|....No. |
|00001170| 20 54 68 65 20 64 6f 6d | 61 69 6e 20 69 73 20 63 | The dom|ain is c|
|00001180| 6f 72 72 65 63 74 2c 20 | 62 75 74 20 74 68 65 20 |orrect, |but the |
|00001190| 72 61 6e 67 65 20 69 73 | 20 69 6e 63 6f 72 72 65 |range is| incorre|
|000011a0| 63 74 2e 20 20 4e 6f 74 | 65 20 74 68 61 74 20 74 |ct. Not|e that t|
|000011b0| 68 65 20 0d 0a 00 76 61 | 6c 75 65 20 6f 66 20 11 |he ...va|lue of .|
|000011c0| 33 66 11 31 28 11 33 78 | 11 31 29 20 63 61 6e 6e |3f.1(.3x|.1) cann|
|000011d0| 6f 74 20 62 65 20 6e 65 | 67 61 74 69 76 65 20 66 |ot be ne|gative f|
|000011e0| 6f 72 20 74 68 69 73 20 | 66 75 6e 63 74 69 6f 6e |or this |function|
|000011f0| 2e 0d 0a 00 00 17 4f 04 | 0d 0b 00 52 69 67 68 74 |......O.|...Right|
|00001200| 2e 20 20 54 68 65 20 64 | 6f 6d 61 69 6e 20 63 6f |. The d|omain co|
|00001210| 6e 73 69 73 74 73 20 6f | 66 20 61 6c 6c 20 11 33 |nsists o|f all .3|
|00001220| 78 11 31 2d 76 61 6c 75 | 65 73 20 62 65 74 77 65 |x.1-valu|es betwe|
|00001230| 65 6e 20 2d 35 20 61 6e | 64 20 35 20 61 6e 64 20 |en -5 an|d 5 and |
|00001240| 74 68 65 20 72 61 6e 67 | 65 0d 0a 00 63 6f 6e 73 |the rang|e...cons|
|00001250| 69 73 74 73 20 6f 66 20 | 61 6c 6c 20 11 33 79 11 |ists of |all .3y.|
|00001260| 31 2d 76 61 6c 75 65 73 | 20 62 65 74 77 65 65 6e |1-values| between|
|00001270| 20 30 20 61 6e 64 20 35 | 2e 0d 0a 00 00 17 4f 04 | 0 and 5|......O.|
|00001280| 0d 0b 00 57 72 6f 6e 67 | 2e 20 20 59 6f 75 20 68 |...Wrong|. You h|
|00001290| 61 76 65 20 74 68 65 20 | 64 6f 6d 61 69 6e 20 61 |ave the |domain a|
|000012a0| 6e 64 20 72 61 6e 67 65 | 20 72 65 76 65 72 73 65 |nd range| reverse|
|000012b0| 64 2e 20 20 54 68 65 20 | 64 6f 6d 61 69 6e 20 69 |d. The |domain i|
|000012c0| 73 20 5b 2d 35 2c 20 35 | 5d 20 61 6e 64 0d 0a 00 |s [-5, 5|] and...|
|000012d0| 74 68 65 20 72 61 6e 67 | 65 20 69 73 20 5b 30 2c |the rang|e is [0,|
|000012e0| 20 35 5d 2e 20 20 0d 0a | 00 00 17 4f 04 0d 0b 00 | 5]. ..|...O....|
|000012f0| 4e 6f 2e 20 20 54 68 65 | 20 72 61 6e 67 65 20 69 |No. The| range i|
|00001300| 73 20 63 6f 72 72 65 63 | 74 2c 20 62 75 74 20 74 |s correc|t, but t|
|00001310| 68 65 20 64 6f 6d 61 69 | 6e 20 69 73 20 6e 6f 74 |he domai|n is not|
|00001320| 2e 20 20 54 68 65 20 64 | 6f 6d 61 69 6e 20 63 6f |. The d|omain co|
|00001330| 6e 73 69 73 74 73 20 6f | 66 0d 0a 00 61 6c 6c 20 |nsists o|f...all |
|00001340| 72 65 61 6c 20 76 61 6c | 75 65 73 20 6f 66 20 11 |real val|ues of .|
|00001350| 33 78 20 11 31 62 65 74 | 77 65 65 6e 20 2d 35 20 |3x .1bet|ween -5 |
|00001360| 61 6e 64 20 35 2e 0d 0a | 00 00 17 4f 04 0d 0b 00 |and 5...|...O....|
|00001370| 52 69 67 68 74 2e 20 20 | 53 69 6e 63 65 20 61 6e |Right. |Since an|
|00001380| 79 20 76 65 72 74 69 63 | 61 6c 20 6c 69 6e 65 20 |y vertic|al line |
|00001390| 69 6e 74 65 72 73 65 63 | 74 73 20 74 68 65 20 67 |intersec|ts the g|
|000013a0| 69 76 65 6e 20 67 72 61 | 70 68 20 6f 6e 6c 79 20 |iven gra|ph only |
|000013b0| 6f 6e 63 65 2c 20 74 68 | 65 20 0d 0a 00 20 20 20 |once, th|e ... |
|000013c0| 20 20 20 20 20 20 20 20 | 20 20 20 11 32 32 0d 0b | | .22..|
|000013d0| 00 11 31 65 71 75 61 74 | 69 6f 6e 20 11 33 79 20 |..1equat|ion .3y |
|000013e0| 11 31 3d 20 11 33 78 20 | 20 11 31 72 65 70 72 65 |.1= .3x | .1repre|
|000013f0| 73 65 6e 74 73 20 61 20 | 77 65 6c 6c 2d 6b 6e 6f |sents a |well-kno|
|00001400| 77 6e 20 66 75 6e 63 74 | 69 6f 6e 20 6f 66 20 11 |wn funct|ion of .|
|00001410| 33 78 11 31 2e 20 20 0d | 0a 00 00 17 4f 05 20 20 |3x.1. .|....O. |
|00001420| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001430| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001440| 20 20 20 20 11 32 32 0d | 0b 00 11 31 57 72 6f 6e | .22.|...1Wron|
|00001450| 67 2e 20 20 49 66 20 79 | 6f 75 20 72 65 61 6c 6c |g. If y|ou reall|
|00001460| 79 20 74 68 69 6e 6b 20 | 74 68 61 74 20 11 33 79 |y think |that .3y|
|00001470| 20 11 31 3d 20 11 33 78 | 20 20 11 31 64 6f 65 73 | .1= .3x| .1does|
|00001480| 20 6e 6f 74 20 72 65 70 | 72 65 73 65 6e 74 20 11 | not rep|resent .|
|00001490| 33 79 20 11 31 61 73 20 | 61 20 66 75 6e 63 74 69 |3y .1as |a functi|
|000014a0| 6f 6e 0d 0a 00 6f 66 20 | 11 33 78 11 31 2c 20 74 |on...of |.3x.1, t|
|000014b0| 68 65 6e 20 79 6f 75 20 | 73 68 6f 75 6c 64 20 72 |hen you |should r|
|000014c0| 65 76 69 65 77 20 74 68 | 65 20 64 65 66 69 6e 69 |eview th|e defini|
|000014d0| 74 69 6f 6e 20 6f 66 20 | 61 20 66 75 6e 63 74 69 |tion of |a functi|
|000014e0| 6f 6e 20 61 6e 64 20 72 | 65 76 69 65 77 20 74 68 |on and r|eview th|
|000014f0| 65 0d 0a 00 76 65 72 74 | 69 63 61 6c 20 6c 69 6e |e...vert|ical lin|
|00001500| 65 20 74 65 73 74 2e 0d | 0a 00 00 17 4f 04 0d 0b |e test..|....O...|
|00001510| 00 57 72 6f 6e 67 2e 20 | 20 54 68 65 20 61 6e 73 |.Wrong. | The ans|
|00001520| 77 65 72 20 63 61 6e 20 | 62 65 20 64 65 74 65 72 |wer can |be deter|
|00001530| 6d 69 6e 65 64 20 66 72 | 6f 6d 20 74 68 65 20 67 |mined fr|om the g|
|00001540| 69 76 65 6e 20 69 6e 66 | 6f 72 6d 61 74 69 6f 6e |iven inf|ormation|
|00001550| 2e 20 20 52 65 76 69 65 | 77 0d 0a 00 47 75 69 64 |. Revie|w...Guid|
|00001560| 65 64 20 45 78 61 6d 70 | 6c 65 20 32 20 61 6e 64 |ed Examp|le 2 and|
|00001570| 20 74 72 79 20 74 68 65 | 20 70 72 6f 62 6c 65 6d | try the| problem|
|00001580| 20 61 67 61 69 6e 2e 0d | 0a 00 00 17 4f 03 0d 0b | again..|....O...|
|00001590| 00 57 72 6f 6e 67 2e 20 | 20 4f 6e 65 20 6f 66 20 |.Wrong. | One of |
|000015a0| 74 68 65 20 61 62 6f 76 | 65 20 69 73 20 63 6f 72 |the abov|e is cor|
|000015b0| 72 65 63 74 2e 20 20 54 | 72 79 20 61 67 61 69 6e |rect. T|ry again|
|000015c0| 2e 0d 0a 00 00 14 4f 03 | 0d 0b 00 57 68 6f 6f 70 |......O.|...Whoop|
|000015d0| 73 21 20 20 54 68 69 73 | 20 69 73 20 6e 6f 74 20 |s! This| is not |
|000015e0| 74 68 65 20 63 6f 72 72 | 65 63 74 20 67 72 61 70 |the corr|ect grap|
|000015f0| 68 2e 0d 0a 00 00 14 4f | 03 0d 0b 00 43 6f 72 72 |h......O|....Corr|
|00001600| 65 63 74 2e 20 20 54 68 | 65 20 67 72 61 70 68 20 |ect. Th|e graph |
|00001610| 6f 66 20 74 68 69 73 20 | 66 75 6e 63 74 69 6f 6e |of this |function|
|00001620| 20 6c 69 65 73 20 62 65 | 6c 6f 77 20 74 68 65 20 | lies be|low the |
|00001630| 11 33 78 11 31 2d 61 78 | 69 73 20 6f 6e 20 74 68 |.3x.1-ax|is on th|
|00001640| 65 20 69 6e 74 65 72 76 | 61 6c 0d 0a 00 28 2d 33 |e interv|al...(-3|
|00001650| 2c 20 33 29 2e 20 20 4f | 75 74 73 69 64 65 20 6f |, 3). O|utside o|
|00001660| 66 20 74 68 69 73 20 69 | 6e 74 65 72 76 61 6c 2c |f this i|nterval,|
|00001670| 20 74 68 65 20 67 72 61 | 70 68 20 6c 69 65 73 20 | the gra|ph lies |
|00001680| 61 62 6f 76 65 20 74 68 | 65 20 11 33 78 11 31 2d |above th|e .3x.1-|
|00001690| 61 78 69 73 2e 0d 0a 00 | 00 14 4f 03 0d 0b 00 53 |axis....|..O....S|
|000016a0| 6f 72 72 79 2c 20 6f 6e | 65 20 6f 66 20 74 68 65 |orry, on|e of the|
|000016b0| 20 61 6e 73 77 65 72 73 | 20 69 73 20 63 6f 72 72 | answers| is corr|
|000016c0| 65 63 74 2e 0d 0a 00 53 | 65 63 74 69 6f 6e 20 32 |ect....S|ection 2|
|000016d0| 2e 33 20 20 41 6e 61 6c | 79 7a 69 6e 67 20 47 72 |.3 Anal|yzing Gr|
|000016e0| 61 70 68 73 20 6f 66 20 | 46 75 6e 63 74 69 6f 6e |aphs of |Function|
|000016f0| 73 0d 0a 00 0d 0a 00 0d | 0b 00 20 20 20 20 0e 78 |s.......|.. .x|
|00001700| 32 2d 33 2d 31 0e 54 75 | 74 6f 72 69 61 6c 20 45 |2-3-1.Tu|torial E|
|00001710| 78 65 72 63 69 73 65 20 | 20 31 0f 0d 0a 00 0d 0b |xercise | 1......|
|00001720| 00 20 20 20 20 0e 78 32 | 2d 33 2d 32 0e 54 75 74 |. .x2|-3-2.Tut|
|00001730| 6f 72 69 61 6c 20 45 78 | 65 72 63 69 73 65 20 20 |orial Ex|ercise |
|00001740| 32 0f 0d 0a 00 0d 0b 00 | 20 20 20 20 0e 78 32 2d |2.......| .x2-|
|00001750| 33 2d 33 0e 54 75 74 6f | 72 69 61 6c 20 45 78 65 |3-3.Tuto|rial Exe|
|00001760| 72 63 69 73 65 20 20 33 | 0f 0d 0a 00 0d 0b 00 20 |rcise 3|....... |
|00001770| 20 20 20 0e 78 32 2d 33 | 2d 34 0e 54 75 74 6f 72 | .x2-3|-4.Tutor|
|00001780| 69 61 6c 20 45 78 65 72 | 63 69 73 65 20 20 34 0f |ial Exer|cise 4.|
|00001790| 0d 0a 00 0d 0b 00 20 20 | 20 20 0e 78 32 2d 33 2d |...... | .x2-3-|
|000017a0| 35 0e 54 75 74 6f 72 69 | 61 6c 20 45 78 65 72 63 |5.Tutori|al Exerc|
|000017b0| 69 73 65 20 20 35 0f 0d | 0a 00 0d 0b 00 20 20 20 |ise 5..|..... |
|000017c0| 20 0e 78 32 2d 33 2d 36 | 0e 54 75 74 6f 72 69 61 | .x2-3-6|.Tutoria|
|000017d0| 6c 20 45 78 65 72 63 69 | 73 65 20 20 36 0f 20 20 |l Exerci|se 6. |
|000017e0| 20 20 0e 78 32 2d 33 2d | 37 0e 54 75 74 6f 72 69 | .x2-3-|7.Tutori|
|000017f0| 61 6c 20 45 78 65 72 63 | 69 73 65 20 20 37 0f 20 |al Exerc|ise 7. |
|00001800| 20 20 20 0e 78 32 2d 33 | 2d 38 0e 54 75 74 6f 72 | .x2-3|-8.Tutor|
|00001810| 69 61 6c 20 45 78 65 72 | 63 69 73 65 20 20 38 0f |ial Exer|cise 8.|
|00001820| 0d 0a 00 0d 0b 00 20 20 | 20 20 0e 78 32 2d 33 2d |...... | .x2-3-|
|00001830| 39 0e 54 75 74 6f 72 69 | 61 6c 20 45 78 65 72 63 |9.Tutori|al Exerc|
|00001840| 69 73 65 20 20 39 0f 20 | 20 20 20 0e 78 32 2d 33 |ise 9. | .x2-3|
|00001850| 2d 31 30 0e 54 75 74 6f | 72 69 61 6c 20 45 78 65 |-10.Tuto|rial Exe|
|00001860| 72 63 69 73 65 20 31 30 | 0f 0d 0a 00 0d 0b 00 53 |rcise 10|.......S|
|00001870| 65 63 74 69 6f 6e 20 32 | 2e 33 20 20 41 6e 61 6c |ection 2|.3 Anal|
|00001880| 79 7a 69 6e 67 20 47 72 | 61 70 68 73 20 6f 66 20 |yzing Gr|aphs of |
|00001890| 46 75 6e 63 74 69 6f 6e | 73 0d 0b 00 20 31 2e 20 |Function|s... 1. |
|000018a0| 20 44 65 74 65 72 6d 69 | 6e 65 20 74 68 65 20 64 | Determi|ne the d|
|000018b0| 6f 6d 61 69 6e 20 61 6e | 64 20 72 61 6e 67 65 20 |omain an|d range |
|000018c0| 6f 66 20 20 20 20 20 20 | 20 14 6a 33 2d 35 2d 35 |of | .j3-5-5|
|000018d0| 2e 6d 14 34 38 14 31 14 | 32 30 14 37 14 0d 0a 00 |.m.48.1.|20.7....|
|000018e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000018f0| 20 20 20 20 20 20 20 20 | 20 20 20 11 34 67 32 32 | | .4g22|
|00001900| 32 32 32 32 0d 0b 00 20 | 20 20 20 20 20 20 20 20 |2222... | |
|00001910| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001920| 20 66 20 20 20 20 20 20 | 11 32 32 0d 0b 00 20 20 | f |.22... |
|00001930| 20 20 20 11 31 74 68 65 | 20 66 75 6e 63 74 69 6f | .1the| functio|
|00001940| 6e 20 11 33 66 11 31 28 | 11 33 78 11 31 29 20 3d |n .3f.1(|.3x.1) =|
|00001950| 20 11 34 76 20 11 31 32 | 35 20 2d 20 11 33 78 20 | .4v .12|5 - .3x |
|00001960| 11 31 2e 0d 0a 00 0d 0a | 00 20 20 20 20 20 0e 33 |.1......|. .3|
|00001970| 2d 35 2d 35 61 0e 28 61 | 29 0f 20 44 6f 6d 61 69 |-5-5a.(a|). Domai|
|00001980| 6e 3a 20 5b 2d 35 2c 20 | 35 5d 20 20 20 52 61 6e |n: [-5, |5] Ran|
|00001990| 67 65 3a 20 5b 2d 35 2c | 20 35 5d 0d 0a 00 0d 0b |ge: [-5,| 5].....|
|000019a0| 00 20 20 20 20 20 0e 33 | 2d 35 2d 35 62 0e 28 62 |. .3|-5-5b.(b|
|000019b0| 29 0f 20 44 6f 6d 61 69 | 6e 3a 20 5b 2d 35 2c 20 |). Domai|n: [-5, |
|000019c0| 35 5d 20 20 20 52 61 6e | 67 65 3a 20 5b 30 2c 20 |5] Ran|ge: [0, |
|000019d0| 35 5d 20 0d 0a 00 0d 0b | 00 20 20 20 20 20 0e 33 |5] .....|. .3|
|000019e0| 2d 35 2d 35 63 0e 28 63 | 29 0f 20 44 6f 6d 61 69 |-5-5c.(c|). Domai|
|000019f0| 6e 3a 20 5b 30 2c 20 35 | 5d 20 20 20 20 52 61 6e |n: [0, 5|] Ran|
|00001a00| 67 65 3a 20 5b 2d 35 2c | 20 35 5d 0d 0a 00 0d 0b |ge: [-5,| 5].....|
|00001a10| 00 20 20 20 20 20 0e 33 | 2d 35 2d 35 64 0e 28 64 |. .3|-5-5d.(d|
|00001a20| 29 0f 20 44 6f 6d 61 69 | 6e 3a 20 5b 30 2c 20 35 |). Domai|n: [0, 5|
|00001a30| 5d 20 20 20 20 52 61 6e | 67 65 3a 20 5b 30 2c 20 |] Ran|ge: [0, |
|00001a40| 35 5d 0d 0a 00 0d 0a 00 | 59 6f 75 20 6d 61 79 20 |5]......|You may |
|00001a50| 77 61 6e 74 20 74 6f 20 | 72 65 76 69 65 77 20 10 |want to |review .|
|00001a60| 32 2d 33 2d 32 0e 65 32 | 2d 33 2d 31 0e 47 75 69 |2-3-2.e2|-3-1.Gui|
|00001a70| 64 65 64 20 45 78 61 6d | 70 6c 65 20 31 2e 0f 0d |ded Exam|ple 1...|
|00001a80| 0a 00 53 65 63 74 69 6f | 6e 20 32 2e 33 20 20 41 |..Sectio|n 2.3 A|
|00001a90| 6e 61 6c 79 7a 69 6e 67 | 20 47 72 61 70 68 73 20 |nalyzing| Graphs |
|00001aa0| 6f 66 20 46 75 6e 63 74 | 69 6f 6e 73 20 20 20 20 |of Funct|ions |
|00001ab0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001ac0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 32 32 | | .22|
|00001ad0| 0d 0b 00 11 31 31 30 2e | 20 20 53 6b 65 74 63 68 |....110.| Sketch|
|00001ae0| 20 74 68 65 20 67 72 61 | 70 68 20 6f 66 20 11 33 | the gra|ph of .3|
|00001af0| 66 11 31 28 11 33 78 11 | 31 29 20 3d 20 11 33 78 |f.1(.3x.|1) = .3x|
|00001b00| 20 20 11 31 2b 20 31 20 | 61 6e 64 20 64 65 74 65 | .1+ 1 |and dete|
|00001b10| 72 6d 69 6e 65 20 74 68 | 65 20 69 6e 74 65 72 76 |rmine th|e interv|
|00001b20| 61 6c 28 73 29 20 28 69 | 66 20 61 6e 79 29 0d 0a |al(s) (i|f any)..|
|00001b30| 00 20 20 20 20 20 6f 6e | 20 74 68 65 20 72 65 61 |. on| the rea|
|00001b40| 6c 20 61 78 69 73 20 66 | 6f 72 20 77 68 69 63 68 |l axis f|or which|
|00001b50| 20 11 33 66 11 31 28 11 | 33 78 11 31 29 20 11 34 | .3f.1(.|3x.1) .4|
|00001b60| 3e 20 11 31 30 2e 0d 0a | 00 0d 0a 00 20 20 20 20 |> .10...|.... |
|00001b70| 20 0e 33 2d 35 2d 34 37 | 61 0e 28 61 29 0f 20 20 | .3-5-47|a.(a). |
|00001b80| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001b90| 20 0e 33 2d 35 2d 34 37 | 62 0e 28 62 29 0f 20 20 | .3-5-47|b.(b). |
|00001ba0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001bb0| 20 0e 33 2d 35 2d 34 37 | 63 0e 28 63 29 0f 20 0d | .3-5-47|c.(c). .|
|00001bc0| 0a 00 14 6a 33 2d 35 2d | 34 37 61 2e 6d 14 39 14 |...j3-5-|47a.m.9.|
|00001bd0| 37 14 32 30 14 37 14 20 | 20 14 6a 33 2d 35 2d 34 |7.20.7. | .j3-5-4|
|00001be0| 37 62 2e 6d 14 33 31 14 | 37 14 32 30 14 37 14 20 |7b.m.31.|7.20.7. |
|00001bf0| 20 14 6a 33 2d 35 2d 34 | 37 63 2e 6d 14 35 33 14 | .j3-5-4|7c.m.53.|
|00001c00| 37 14 32 30 14 37 14 0d | 0a 00 0d 0a 00 0d 0a 00 |7.20.7..|........|
|00001c10| 0d 0a 00 0d 0a 00 0d 0a | 00 0d 0b 00 20 20 20 20 |........|.... |
|00001c20| 20 20 20 20 20 28 2d 31 | 2c 20 11 34 38 11 31 29 | (-1|, .48.1)|
|00001c30| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 28 | | (|
|00001c40| 2d 11 34 38 11 31 2c 20 | 11 34 38 11 31 29 20 20 |-.48.1, |.48.1) |
|00001c50| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 28 2d 11 | | (-.|
|00001c60| 34 38 11 31 2c 20 11 34 | 38 11 31 29 0d 0a 00 0d |48.1, .4|8.1)....|
|00001c70| 0a 00 20 20 20 20 20 0e | 33 2d 35 2d 34 37 64 0e |.. .|3-5-47d.|
|00001c80| 28 64 29 0f 20 4e 6f 6e | 65 20 6f 66 20 74 68 65 |(d). Non|e of the|
|00001c90| 73 65 0d 0a 00 0d 0a 00 | 59 6f 75 20 6d 61 79 20 |se......|You may |
|00001ca0| 77 61 6e 74 20 74 6f 20 | 72 65 76 69 65 77 20 10 |want to |review .|
|00001cb0| 32 2d 33 2d 32 0e 69 32 | 2d 33 2d 34 0e 49 6e 74 |2-3-2.i2|-3-4.Int|
|00001cc0| 65 67 72 61 74 65 64 20 | 45 78 61 6d 70 6c 65 20 |egrated |Example |
|00001cd0| 34 2e 0f 0d 0a 00 53 65 | 63 74 69 6f 6e 20 32 2e |4.....Se|ction 2.|
|00001ce0| 33 20 20 41 6e 61 6c 79 | 7a 69 6e 67 20 47 72 61 |3 Analy|zing Gra|
|00001cf0| 70 68 73 20 6f 66 20 46 | 75 6e 63 74 69 6f 6e 73 |phs of F|unctions|
|00001d00| 0d 0b 00 20 32 2e 20 20 | 55 73 65 20 74 68 65 20 |... 2. |Use the |
|00001d10| 76 65 72 74 69 63 61 6c | 20 6c 69 6e 65 20 74 65 |vertical| line te|
|00001d20| 73 74 20 74 6f 20 20 20 | 20 20 20 20 20 20 20 20 |st to | |
|00001d30| 20 20 14 6a 33 2d 35 2d | 37 2e 6d 14 34 38 14 31 | .j3-5-|7.m.48.1|
|00001d40| 14 32 30 14 37 14 0d 0a | 00 20 20 20 20 20 20 20 |.20.7...|. |
|00001d50| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001d60| 20 20 20 20 20 11 32 32 | 0d 0b 00 20 20 20 20 20 | .22|... |
|00001d70| 11 31 64 65 74 65 72 6d | 69 6e 65 20 77 68 65 74 |.1determ|ine whet|
|00001d80| 68 65 72 20 11 33 79 20 | 11 31 3d 20 11 33 78 20 |her .3y |.1= .3x |
|00001d90| 20 0d 0a 00 0d 0b 00 20 | 20 20 20 20 11 31 72 65 | ...... | .1re|
|00001da0| 70 72 65 73 65 6e 74 73 | 20 11 33 79 20 11 31 61 |presents| .3y .1a|
|00001db0| 73 20 61 20 66 75 6e 63 | 74 69 6f 6e 20 6f 66 20 |s a func|tion of |
|00001dc0| 11 33 78 11 31 2e 0d 0a | 00 0d 0a 00 20 20 20 20 |.3x.1...|.... |
|00001dd0| 20 0e 33 2d 35 2d 37 61 | 0e 28 61 29 0f 20 11 33 | .3-5-7a|.(a). .3|
|00001de0| 79 20 11 31 69 73 20 61 | 20 66 75 6e 63 74 69 6f |y .1is a| functio|
|00001df0| 6e 20 6f 66 20 11 33 78 | 0d 0a 00 0d 0b 00 20 20 |n of .3x|...... |
|00001e00| 20 20 20 11 31 0e 33 2d | 35 2d 37 62 0e 28 62 29 | .1.3-|5-7b.(b)|
|00001e10| 0f 20 11 33 79 20 11 31 | 69 73 20 6e 6f 74 20 61 |. .3y .1|is not a|
|00001e20| 20 66 75 6e 63 74 69 6f | 6e 20 6f 66 20 11 33 78 | functio|n of .3x|
|00001e30| 0d 0a 00 0d 0b 00 20 20 | 20 20 20 11 31 0e 33 2d |...... | .1.3-|
|00001e40| 35 2d 37 63 0e 28 63 29 | 0f 20 4e 6f 74 20 65 6e |5-7c.(c)|. Not en|
|00001e50| 6f 75 67 68 20 69 6e 66 | 6f 72 6d 61 74 69 6f 6e |ough inf|ormation|
|00001e60| 0d 0a 00 0d 0b 00 20 20 | 20 20 20 0e 33 2d 35 2d |...... | .3-5-|
|00001e70| 37 64 0e 28 64 29 0f 20 | 4e 6f 6e 65 20 6f 66 20 |7d.(d). |None of |
|00001e80| 74 68 65 73 65 0d 0a 00 | 0d 0a 00 59 6f 75 20 6d |these...|...You m|
|00001e90| 61 79 20 77 61 6e 74 20 | 74 6f 20 72 65 76 69 65 |ay want |to revie|
|00001ea0| 77 20 10 32 2d 33 2d 32 | 0e 65 32 2d 33 2d 32 0e |w .2-3-2|.e2-3-2.|
|00001eb0| 47 75 69 64 65 64 20 45 | 78 61 6d 70 6c 65 20 32 |Guided E|xample 2|
|00001ec0| 2e 0f 0d 0a 00 53 65 63 | 74 69 6f 6e 20 32 2e 33 |.....Sec|tion 2.3|
|00001ed0| 20 20 41 6e 61 6c 79 7a | 69 6e 67 20 47 72 61 70 | Analyz|ing Grap|
|00001ee0| 68 73 20 6f 66 20 46 75 | 6e 63 74 69 6f 6e 73 0d |hs of Fu|nctions.|
|00001ef0| 0b 00 20 33 2e 20 20 44 | 65 74 65 72 6d 69 6e 65 |.. 3. D|etermine|
|00001f00| 20 74 68 65 20 69 6e 74 | 65 72 76 61 6c 73 20 6f | the int|ervals o|
|00001f10| 76 65 72 20 77 68 69 63 | 68 20 20 20 20 20 20 20 |ver whic|h |
|00001f20| 20 20 20 14 6a 33 2d 35 | 2d 31 35 2e 6d 14 34 38 | .j3-5|-15.m.48|
|00001f30| 14 31 14 32 30 14 37 14 | 0d 0a 00 0d 0b 00 20 20 |.1.20.7.|...... |
|00001f40| 20 20 20 74 68 65 20 66 | 75 6e 63 74 69 6f 6e 20 | the f|unction |
|00001f50| 0d 0a 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00001f60| 20 20 20 20 20 20 11 32 | 33 20 20 20 20 20 32 0d | .2|3 2.|
|00001f70| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 11 33 66 |.. | .3f|
|00001f80| 11 31 28 11 33 78 11 31 | 29 20 3d 20 11 33 78 20 |.1(.3x.1|) = .3x |
|00001f90| 20 11 31 2d 20 33 11 33 | 78 20 20 0d 0a 00 0d 0b | .1- 3.3|x .....|
|00001fa0| 00 20 20 20 20 20 11 31 | 69 73 20 69 6e 63 72 65 |. .1|is incre|
|00001fb0| 61 73 69 6e 67 2c 20 64 | 65 63 72 65 61 73 69 6e |asing, d|ecreasin|
|00001fc0| 67 2c 20 6f 72 20 0d 0a | 00 0d 0b 00 20 20 20 20 |g, or ..|.... |
|00001fd0| 20 63 6f 6e 73 74 61 6e | 74 2e 0d 0a 00 0d 0a 00 | constan|t.......|
|00001fe0| 0d 0b 00 20 20 20 20 20 | 0e 33 2d 35 2d 31 35 61 |... |.3-5-15a|
|00001ff0| 0e 28 61 29 0f 20 44 65 | 63 72 65 61 73 69 6e 67 |.(a). De|creasing|
|00002000| 3a 20 28 2d 11 34 38 11 | 31 2c 20 33 29 20 20 20 |: (-.48.|1, 3) |
|00002010| 20 20 20 20 20 20 20 20 | 49 6e 63 72 65 61 73 69 | |Increasi|
|00002020| 6e 67 3a 20 28 33 2c 20 | 11 34 38 11 31 29 0d 0a |ng: (3, |.48.1)..|
|00002030| 00 0d 0b 00 20 20 20 20 | 20 0e 33 2d 35 2d 31 35 |.... | .3-5-15|
|00002040| 62 0e 28 62 29 0f 20 44 | 65 63 72 65 61 73 69 6e |b.(b). D|ecreasin|
|00002050| 67 3a 20 28 2d 11 34 38 | 11 31 2c 20 30 29 2c 20 |g: (-.48|.1, 0), |
|00002060| 28 32 2c 20 11 34 38 11 | 31 29 20 20 20 49 6e 63 |(2, .48.|1) Inc|
|00002070| 72 65 61 73 69 6e 67 3a | 20 28 30 2c 20 32 29 0d |reasing:| (0, 2).|
|00002080| 0a 00 0d 0b 00 20 20 20 | 20 20 0e 33 2d 35 2d 31 |..... | .3-5-1|
|00002090| 35 63 0e 28 63 29 0f 20 | 44 65 63 72 65 61 73 69 |5c.(c). |Decreasi|
|000020a0| 6e 67 3a 20 28 30 2c 20 | 11 34 38 11 31 29 20 20 |ng: (0, |.48.1) |
|000020b0| 20 20 20 20 20 20 20 20 | 20 20 49 6e 63 72 65 61 | | Increa|
|000020c0| 73 69 6e 67 3a 20 28 2d | 11 34 38 11 31 2c 20 30 |sing: (-|.48.1, 0|
|000020d0| 29 0d 0a 00 0d 0b 00 20 | 20 20 20 20 0e 33 2d 35 |)...... | .3-5|
|000020e0| 2d 31 35 64 0e 28 64 29 | 0f 20 44 65 63 72 65 61 |-15d.(d)|. Decrea|
|000020f0| 73 69 6e 67 3a 20 28 30 | 2c 20 32 29 20 20 20 20 |sing: (0|, 2) |
|00002100| 20 20 20 20 20 20 20 20 | 49 6e 63 72 65 61 73 69 | |Increasi|
|00002110| 6e 67 3a 20 28 2d 11 34 | 38 11 31 2c 20 30 29 2c |ng: (-.4|8.1, 0),|
|00002120| 20 28 32 2c 20 11 34 38 | 11 31 29 0d 0a 00 0d 0a | (2, .48|.1).....|
|00002130| 00 59 6f 75 20 6d 61 79 | 20 77 61 6e 74 20 74 6f |.You may| want to|
|00002140| 20 72 65 76 69 65 77 20 | 10 32 2d 33 2d 32 0e 65 | review |.2-3-2.e|
|00002150| 32 2d 33 2d 33 0e 47 75 | 69 64 65 64 20 45 78 61 |2-3-3.Gu|ided Exa|
|00002160| 6d 70 6c 65 20 33 2e 0f | 0d 0a 00 53 65 63 74 69 |mple 3..|...Secti|
|00002170| 6f 6e 20 32 2e 33 20 20 | 41 6e 61 6c 79 7a 69 6e |on 2.3 |Analyzin|
|00002180| 67 20 47 72 61 70 68 73 | 20 6f 66 20 46 75 6e 63 |g Graphs| of Func|
|00002190| 74 69 6f 6e 73 20 20 20 | 20 20 20 20 20 20 20 20 |tions | |
|000021a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000021b0| 20 20 20 20 20 11 34 5b | 32 20 20 20 20 20 20 20 | .4[|2 |
|000021c0| 32 5d 0d 0b 00 20 11 31 | 34 2e 20 20 53 6b 65 74 |2]... .1|4. Sket|
|000021d0| 63 68 20 74 68 65 20 67 | 72 61 70 68 20 6f 66 20 |ch the g|raph of |
|000021e0| 11 33 66 11 31 28 11 33 | 78 11 31 29 20 3d 20 11 |.3f.1(.3|x.1) = .|
|000021f0| 34 21 21 20 11 33 78 20 | 11 31 2d 20 31 20 11 34 |4!! .3x |.1- 1 .4|
|00002200| 21 21 20 11 31 61 6e 64 | 20 64 65 74 65 72 6d 69 |!! .1and| determi|
|00002210| 6e 65 20 77 68 65 74 68 | 65 72 20 74 68 65 20 66 |ne wheth|er the f|
|00002220| 75 6e 63 74 69 6f 6e 0d | 0b 00 20 20 20 20 20 20 |unction.|.. |
|00002230| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002240| 20 20 20 20 20 20 20 20 | 20 20 11 34 6c 32 20 20 | | .4l2 |
|00002250| 20 20 20 20 20 32 6a 0d | 0b 00 20 20 20 20 20 11 | 2j.|.. .|
|00002260| 31 69 73 20 65 76 65 6e | 2c 20 6f 64 64 2c 20 6f |1is even|, odd, o|
|00002270| 72 20 6e 65 69 74 68 65 | 72 2e 0d 0a 00 0d 0a 00 |r neithe|r.......|
|00002280| 20 20 20 20 20 0e 33 2d | 35 2d 33 39 61 0e 28 61 | .3-|5-39a.(a|
|00002290| 29 0f 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |). | |
|000022a0| 20 20 20 20 20 0e 33 2d | 35 2d 33 39 62 0e 28 62 | .3-|5-39b.(b|
|000022b0| 29 0f 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |). | |
|000022c0| 20 20 20 20 20 0e 33 2d | 35 2d 33 39 63 0e 28 63 | .3-|5-39c.(c|
|000022d0| 29 0f 20 0d 0a 00 14 6a | 33 2d 35 2d 33 39 61 2e |). ....j|3-5-39a.|
|000022e0| 6d 14 39 14 38 14 32 30 | 14 37 14 20 20 14 6a 33 |m.9.8.20|.7. .j3|
|000022f0| 2d 35 2d 33 39 62 2e 6d | 14 33 31 14 38 14 32 30 |-5-39b.m|.31.8.20|
|00002300| 14 37 14 20 20 14 6a 33 | 2d 35 2d 33 39 63 2e 6d |.7. .j3|-5-39c.m|
|00002310| 14 35 33 14 38 14 32 30 | 14 37 14 0d 0a 00 0d 0a |.53.8.20|.7......|
|00002320| 00 0d 0a 00 0d 0a 00 0d | 0a 00 0d 0a 00 0d 0a 00 |........|........|
|00002330| 20 20 20 20 20 20 20 20 | 20 4e 65 69 74 68 65 72 | | Neither|
|00002340| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 45 | | E|
|00002350| 76 65 6e 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |ven | |
|00002360| 20 20 20 20 20 4e 65 69 | 74 68 65 72 0d 0a 00 0d | Nei|ther....|
|00002370| 0a 00 20 20 20 20 20 0e | 33 2d 35 2d 33 39 64 0e |.. .|3-5-39d.|
|00002380| 28 64 29 0f 20 4e 6f 6e | 65 20 6f 66 20 74 68 65 |(d). Non|e of the|
|00002390| 73 65 0d 0a 00 0d 0a 00 | 59 6f 75 20 6d 61 79 20 |se......|You may |
|000023a0| 77 61 6e 74 20 74 6f 20 | 72 65 76 69 65 77 20 10 |want to |review .|
|000023b0| 32 2d 33 2d 32 0e 65 32 | 2d 33 2d 34 0e 47 75 69 |2-3-2.e2|-3-4.Gui|
|000023c0| 64 65 64 20 45 78 61 6d | 70 6c 65 20 34 2e 0f 0d |ded Exam|ple 4...|
|000023d0| 0a 00 53 65 63 74 69 6f | 6e 20 32 2e 33 20 20 41 |..Sectio|n 2.3 A|
|000023e0| 6e 61 6c 79 7a 69 6e 67 | 20 47 72 61 70 68 73 20 |nalyzing| Graphs |
|000023f0| 6f 66 20 46 75 6e 63 74 | 69 6f 6e 73 20 20 20 20 |of Funct|ions |
|00002400| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002410| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 32 33 0d | | .23.|
|00002420| 0b 00 20 11 31 35 2e 20 | 20 44 65 74 65 72 6d 69 |.. .15. | Determi|
|00002430| 6e 65 20 77 68 65 74 68 | 65 72 20 11 33 67 11 31 |ne wheth|er .3g.1|
|00002440| 28 11 33 78 11 31 29 20 | 3d 20 32 11 33 78 20 20 |(.3x.1) |= 2.3x |
|00002450| 11 31 2d 20 33 11 33 78 | 20 11 31 69 73 20 65 76 |.1- 3.3x| .1is ev|
|00002460| 65 6e 2c 20 6f 64 64 2c | 20 6f 72 20 6e 65 69 74 |en, odd,| or neit|
|00002470| 68 65 72 2e 0d 0a 00 0d | 0a 00 20 20 20 20 20 0e |her.....|.. .|
|00002480| 33 2d 35 2d 32 33 61 0e | 28 61 29 0f 20 45 76 65 |3-5-23a.|(a). Eve|
|00002490| 6e 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |n | |
|000024a0| 20 20 20 20 20 20 20 20 | 20 20 0e 33 2d 35 2d 32 | | .3-5-2|
|000024b0| 33 62 0e 28 62 29 0f 20 | 4f 64 64 0d 0a 00 0d 0b |3b.(b). |Odd.....|
|000024c0| 00 20 20 20 20 20 0e 33 | 2d 35 2d 32 33 63 0e 28 |. .3|-5-23c.(|
|000024d0| 63 29 0f 20 45 76 65 6e | 20 61 6e 64 20 4f 64 64 |c). Even| and Odd|
|000024e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000024f0| 20 0e 33 2d 35 2d 32 33 | 64 0e 28 64 29 0f 20 4e | .3-5-23|d.(d). N|
|00002500| 65 69 74 68 65 72 0d 0a | 00 0d 0a 00 59 6f 75 20 |either..|....You |
|00002510| 6d 61 79 20 77 61 6e 74 | 20 74 6f 20 72 65 76 69 |may want| to revi|
|00002520| 65 77 20 10 32 2d 33 2d | 32 0e 65 32 2d 33 2d 35 |ew .2-3-|2.e2-3-5|
|00002530| 0e 47 75 69 64 65 64 20 | 45 78 61 6d 70 6c 65 20 |.Guided |Example |
|00002540| 35 2e 0f 0d 0a 00 53 65 | 63 74 69 6f 6e 20 32 2e |5.....Se|ction 2.|
|00002550| 33 20 20 41 6e 61 6c 79 | 7a 69 6e 67 20 47 72 61 |3 Analy|zing Gra|
|00002560| 70 68 73 20 6f 66 20 46 | 75 6e 63 74 69 6f 6e 73 |phs of F|unctions|
|00002570| 0d 0b 00 20 36 2e 20 20 | 53 6b 65 74 63 68 20 74 |... 6. |Sketch t|
|00002580| 68 65 20 67 72 61 70 68 | 20 6f 66 20 11 33 66 11 |he graph| of .3f.|
|00002590| 31 28 11 33 78 11 31 29 | 20 3d 20 33 20 61 6e 64 |1(.3x.1)| = 3 and|
|000025a0| 20 64 65 74 65 72 6d 69 | 6e 65 20 77 68 65 74 68 | determi|ne wheth|
|000025b0| 65 72 20 74 68 65 20 66 | 75 6e 63 74 69 6f 6e 20 |er the f|unction |
|000025c0| 69 73 20 65 76 65 6e 2c | 0d 0a 00 20 20 20 20 20 |is even,|... |
|000025d0| 6f 64 64 2c 20 6f 72 20 | 6e 65 69 74 68 65 72 2e |odd, or |neither.|
|000025e0| 0d 0a 00 0d 0a 00 20 20 | 20 20 20 0e 33 2d 35 2d |...... | .3-5-|
|000025f0| 32 37 61 0e 28 61 29 0f | 20 20 20 20 20 20 20 20 |27a.(a).| |
|00002600| 20 20 20 20 20 20 20 20 | 20 20 20 0e 33 2d 35 2d | | .3-5-|
|00002610| 32 37 62 0e 28 62 29 0f | 20 20 20 20 20 20 20 20 |27b.(b).| |
|00002620| 20 20 20 20 20 20 20 20 | 20 20 20 0e 33 2d 35 2d | | .3-5-|
|00002630| 32 37 63 0e 28 63 29 0f | 20 0d 0a 00 14 6a 33 2d |27c.(c).| ....j3-|
|00002640| 35 2d 32 37 2e 6d 14 39 | 14 37 14 32 30 14 37 14 |5-27.m.9|.7.20.7.|
|00002650| 20 20 14 6a 33 2d 35 2d | 32 37 2e 6d 14 33 31 14 | .j3-5-|27.m.31.|
|00002660| 37 14 32 30 14 37 14 20 | 20 14 6a 33 2d 35 2d 32 |7.20.7. | .j3-5-2|
|00002670| 37 2e 6d 14 35 33 14 37 | 14 32 30 14 37 14 0d 0a |7.m.53.7|.20.7...|
|00002680| 00 0d 0a 00 0d 0a 00 0d | 0a 00 0d 0a 00 0d 0a 00 |........|........|
|00002690| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 45 76 65 6e |... | Even|
|000026a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000026b0| 20 20 4f 64 64 20 20 20 | 20 20 20 20 20 20 20 20 | Odd | |
|000026c0| 20 20 20 20 20 20 20 20 | 4e 65 69 74 68 65 72 0d | |Neither.|
|000026d0| 0a 00 0d 0a 00 20 20 20 | 20 20 0e 33 2d 35 2d 32 |..... | .3-5-2|
|000026e0| 37 64 0e 28 64 29 0f 20 | 4e 6f 6e 65 20 6f 66 20 |7d.(d). |None of |
|000026f0| 74 68 65 73 65 0d 0a 00 | 0d 0a 00 59 6f 75 20 6d |these...|...You m|
|00002700| 61 79 20 77 61 6e 74 20 | 74 6f 20 72 65 76 69 65 |ay want |to revie|
|00002710| 77 20 10 32 2d 33 2d 32 | 0e 69 32 2d 33 2d 31 0e |w .2-3-2|.i2-3-1.|
|00002720| 49 6e 74 65 67 72 61 74 | 65 64 20 45 78 61 6d 70 |Integrat|ed Examp|
|00002730| 6c 65 20 31 2e 0f 0d 0a | 00 53 65 63 74 69 6f 6e |le 1....|.Section|
|00002740| 20 32 2e 33 20 20 41 6e | 61 6c 79 7a 69 6e 67 20 | 2.3 An|alyzing |
|00002750| 47 72 61 70 68 73 20 6f | 66 20 46 75 6e 63 74 69 |Graphs o|f Functi|
|00002760| 6f 6e 73 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |ons | |
|00002770| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002780| 20 20 20 20 11 32 33 0d | 0b 00 20 20 20 20 20 20 | .23.|.. |
|00002790| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000027a0| 20 20 20 20 20 20 20 20 | 20 20 11 33 73 0d 0b 00 | | .3s...|
|000027b0| 20 11 31 37 2e 20 20 53 | 6b 65 74 63 68 20 74 68 | .17. S|ketch th|
|000027c0| 65 20 67 72 61 70 68 20 | 6f 66 20 11 33 67 11 31 |e graph |of .3g.1|
|000027d0| 28 11 33 73 11 31 29 20 | 3d 20 11 34 32 32 20 11 |(.3s.1) |= .422 .|
|000027e0| 31 61 6e 64 20 64 65 74 | 65 72 6d 69 6e 65 20 77 |1and det|ermine w|
|000027f0| 68 65 74 68 65 72 20 74 | 68 65 20 66 75 6e 63 74 |hether t|he funct|
|00002800| 69 6f 6e 20 69 73 20 65 | 76 65 6e 2c 0d 0b 00 20 |ion is e|ven,... |
|00002810| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002820| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 34 | | 4|
|00002830| 0d 0a 00 20 20 20 20 20 | 6f 64 64 2c 20 6f 72 20 |... |odd, or |
|00002840| 6e 65 69 74 68 65 72 2e | 0d 0a 00 0d 0a 00 20 20 |neither.|...... |
|00002850| 20 20 20 0e 33 2d 35 2d | 33 31 61 0e 28 61 29 0f | .3-5-|31a.(a).|
|00002860| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002870| 20 20 20 0e 33 2d 35 2d | 33 31 62 0e 28 62 29 0f | .3-5-|31b.(b).|
|00002880| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002890| 20 20 20 0e 33 2d 35 2d | 33 31 63 0e 28 63 29 0f | .3-5-|31c.(c).|
|000028a0| 0d 0a 00 14 6a 33 2d 35 | 2d 33 31 61 2e 6d 14 39 |....j3-5|-31a.m.9|
|000028b0| 14 39 14 32 30 14 37 14 | 20 20 14 6a 33 2d 35 2d |.9.20.7.| .j3-5-|
|000028c0| 33 31 62 2e 6d 14 33 31 | 14 39 14 32 30 14 37 14 |31b.m.31|.9.20.7.|
|000028d0| 20 20 14 6a 33 2d 35 2d | 33 31 61 2e 6d 14 35 33 | .j3-5-|31a.m.53|
|000028e0| 14 39 14 32 30 14 37 14 | 0d 0a 00 0d 0a 00 0d 0a |.9.20.7.|........|
|000028f0| 00 0d 0a 00 0d 0a 00 0d | 0a 00 0d 0b 00 20 20 20 |........|..... |
|00002900| 20 20 20 20 20 20 4f 64 | 64 20 20 20 20 20 20 20 | Od|d |
|00002910| 20 20 20 20 20 20 20 20 | 20 20 20 20 4f 64 64 20 | | Odd |
|00002920| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002930| 20 20 45 76 65 6e 0d 0a | 00 0d 0a 00 20 20 20 20 | Even..|.... |
|00002940| 20 0e 33 2d 35 2d 33 31 | 64 0e 28 64 29 0f 20 4e | .3-5-31|d.(d). N|
|00002950| 6f 6e 65 20 6f 66 20 74 | 68 65 73 65 0d 0a 00 0d |one of t|hese....|
|00002960| 0a 00 59 6f 75 20 6d 61 | 79 20 77 61 6e 74 20 74 |..You ma|y want t|
|00002970| 6f 20 72 65 76 69 65 77 | 20 10 32 2d 33 2d 32 0e |o review| .2-3-2.|
|00002980| 69 32 2d 33 2d 32 0e 49 | 6e 74 65 67 72 61 74 65 |i2-3-2.I|ntegrate|
|00002990| 64 20 45 78 61 6d 70 6c | 65 20 32 2e 0f 0d 0a 00 |d Exampl|e 2.....|
|000029a0| 53 65 63 74 69 6f 6e 20 | 32 2e 33 20 20 41 6e 61 |Section |2.3 Ana|
|000029b0| 6c 79 7a 69 6e 67 20 47 | 72 61 70 68 73 20 6f 66 |lyzing G|raphs of|
|000029c0| 20 46 75 6e 63 74 69 6f | 6e 73 0d 0b 00 20 20 20 | Functio|ns... |
|000029d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000029e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 34 28 | | .4(|
|000029f0| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00002a00| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002a10| 20 20 20 21 11 33 78 20 | 11 31 2b 20 33 2c 20 20 | !.3x |.1+ 3, |
|00002a20| 20 11 33 78 20 11 34 3c | 20 11 31 30 0d 0b 00 20 | .3x .4<| .10... |
|00002a30| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002a40| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|00002a50| 34 21 0d 0b 00 20 11 31 | 38 2e 20 20 53 6b 65 74 |4!... .1|8. Sket|
|00002a60| 63 68 20 74 68 65 20 67 | 72 61 70 68 20 6f 66 20 |ch the g|raph of |
|00002a70| 11 33 66 11 31 28 11 33 | 78 11 31 29 20 3d 20 11 |.3f.1(.3|x.1) = .|
|00002a80| 34 7b 11 31 33 2c 20 20 | 20 20 20 20 20 30 20 3c |4{.13, | 0 <|
|00002a90| 20 11 33 78 20 11 34 3c | 20 11 31 32 20 61 6e 64 | .3x .4<| .12 and|
|00002aa0| 20 64 65 74 65 72 6d 69 | 6e 65 20 77 68 65 74 68 | determi|ne wheth|
|00002ab0| 65 72 20 74 68 65 0d 0b | 00 20 20 20 20 20 20 20 |er the..|. |
|00002ac0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002ad0| 20 20 20 20 20 20 20 20 | 20 11 34 21 0d 0b 00 20 | | .4!... |
|00002ae0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002af0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 21 | | !|
|00002b00| 11 31 32 11 33 78 20 11 | 31 2d 20 31 2c 20 20 11 |.12.3x .|1- 1, .|
|00002b10| 33 78 20 11 31 3e 20 32 | 0d 0b 00 20 20 20 20 20 |3x .1> 2|... |
|00002b20| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002b30| 20 20 20 20 20 20 20 20 | 20 20 20 11 34 39 0d 0a | | .49..|
|00002b40| 00 20 20 20 20 20 11 31 | 66 75 6e 63 74 69 6f 6e |. .1|function|
|00002b50| 20 69 73 20 65 76 65 6e | 2c 20 6f 64 64 2c 20 6f | is even|, odd, o|
|00002b60| 72 20 6e 65 69 74 68 65 | 72 2e 0d 0a 00 0d 0a 00 |r neithe|r.......|
|00002b70| 20 20 20 20 20 0e 33 2d | 35 2d 33 37 61 0e 28 61 | .3-|5-37a.(a|
|00002b80| 29 0f 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |). | |
|00002b90| 20 20 20 20 20 0e 33 2d | 35 2d 33 37 62 0e 28 62 | .3-|5-37b.(b|
|00002ba0| 29 0f 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |). | |
|00002bb0| 20 20 20 20 20 0e 33 2d | 35 2d 33 37 63 0e 28 63 | .3-|5-37c.(c|
|00002bc0| 29 0f 20 0d 0a 00 14 6a | 33 2d 35 2d 33 37 61 2e |). ....j|3-5-37a.|
|00002bd0| 6d 14 39 14 31 33 14 32 | 30 14 37 14 20 20 14 6a |m.9.13.2|0.7. .j|
|00002be0| 33 2d 35 2d 33 37 62 2e | 6d 14 33 31 14 31 33 14 |3-5-37b.|m.31.13.|
|00002bf0| 32 30 14 37 14 20 20 14 | 6a 33 2d 35 2d 33 37 63 |20.7. .|j3-5-37c|
|00002c00| 2e 6d 14 35 33 14 31 33 | 14 32 30 14 37 14 0d 0a |.m.53.13|.20.7...|
|00002c10| 00 0d 0a 00 0d 0a 00 0d | 0a 00 0d 0a 00 0d 0a 00 |........|........|
|00002c20| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 4e 65 69 74 |... | Neit|
|00002c30| 68 65 72 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |her | |
|00002c40| 20 20 45 76 65 6e 20 20 | 20 20 20 20 20 20 20 20 | Even | |
|00002c50| 20 20 20 20 20 20 20 20 | 4e 65 69 74 68 65 72 0d | |Neither.|
|00002c60| 0a 00 0d 0a 00 20 20 20 | 20 20 0e 33 2d 35 2d 33 |..... | .3-5-3|
|00002c70| 37 64 0e 28 64 29 0f 20 | 4e 6f 6e 65 20 6f 66 20 |7d.(d). |None of |
|00002c80| 74 68 65 73 65 0d 0a 00 | 0d 0a 00 59 6f 75 20 6d |these...|...You m|
|00002c90| 61 79 20 77 61 6e 74 20 | 74 6f 20 72 65 76 69 65 |ay want |to revie|
|00002ca0| 77 20 10 32 2d 33 2d 32 | 0e 69 32 2d 33 2d 33 0e |w .2-3-2|.i2-3-3.|
|00002cb0| 49 6e 74 65 67 72 61 74 | 65 64 20 45 78 61 6d 70 |Integrat|ed Examp|
|00002cc0| 6c 65 20 33 2e 0f 0d 0a | 00 53 65 63 74 69 6f 6e |le 3....|.Section|
|00002cd0| 20 32 2e 33 20 20 41 6e | 61 6c 79 7a 69 6e 67 20 | 2.3 An|alyzing |
|00002ce0| 47 72 61 70 68 73 20 6f | 66 20 46 75 6e 63 74 69 |Graphs o|f Functi|
|00002cf0| 6f 6e 73 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |ons | |
|00002d00| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002d10| 20 20 20 20 11 32 32 0d | 0b 00 20 11 31 39 2e 20 | .22.|.. .19. |
|00002d20| 20 53 6b 65 74 63 68 20 | 74 68 65 20 67 72 61 70 | Sketch |the grap|
|00002d30| 68 20 6f 66 20 11 33 66 | 11 31 28 11 33 78 11 31 |h of .3f|.1(.3x.1|
|00002d40| 29 20 3d 20 11 33 78 20 | 20 11 31 2d 20 39 20 61 |) = .3x | .1- 9 a|
|00002d50| 6e 64 20 64 65 74 65 72 | 6d 69 6e 65 20 74 68 65 |nd deter|mine the|
|00002d60| 20 69 6e 74 65 72 76 61 | 6c 28 73 29 20 28 69 66 | interva|l(s) (if|
|00002d70| 20 61 6e 79 29 0d 0a 00 | 20 20 20 20 20 6f 6e 20 | any)...| on |
|00002d80| 74 68 65 20 72 65 61 6c | 20 61 78 69 73 20 66 6f |the real| axis fo|
|00002d90| 72 20 77 68 69 63 68 20 | 11 33 66 11 31 28 11 33 |r which |.3f.1(.3|
|00002da0| 78 11 31 29 20 11 34 3e | 20 11 31 30 2e 0d 0a 00 |x.1) .4>| .10....|
|00002db0| 0d 0a 00 20 20 20 20 20 | 0e 61 33 2d 35 2d 34 33 |... |.a3-5-43|
|00002dc0| 61 0e 28 61 29 0f 20 20 | 20 20 20 20 20 20 20 20 |a.(a). | |
|00002dd0| 20 20 20 20 20 20 20 20 | 20 0e 61 33 2d 35 2d 34 | | .a3-5-4|
|00002de0| 33 61 0e 28 62 29 0f 20 | 20 20 20 20 20 20 20 20 |3a.(b). | |
|00002df0| 20 20 20 20 20 20 20 20 | 20 20 0e 61 33 2d 35 2d | | .a3-5-|
|00002e00| 34 33 63 0e 28 63 29 0f | 0d 0a 00 0d 0b 00 14 33 |43c.(c).|.......3|
|00002e10| 2d 35 2d 34 33 61 2e 68 | 69 14 31 30 14 39 14 31 |-5-43a.h|i.10.9.1|
|00002e20| 34 14 37 14 20 14 33 2d | 35 2d 34 33 62 2e 68 69 |4.7. .3-|5-43b.hi|
|00002e30| 14 33 32 14 39 14 31 34 | 14 37 14 20 14 33 2d 35 |.32.9.14|.7. .3-5|
|00002e40| 2d 34 33 63 2e 68 69 14 | 35 34 14 39 14 31 34 14 |-43c.hi.|54.9.14.|
|00002e50| 37 14 0d 0a 00 0d 0a 00 | 0d 0a 00 0d 0a 00 0d 0a |7.......|........|
|00002e60| 00 0d 0a 00 0d 0a 00 20 | 20 20 20 20 20 20 20 20 |....... | |
|00002e70| 28 2d 11 34 38 11 31 2c | 20 11 34 38 11 31 29 20 |(-.48.1,| .48.1) |
|00002e80| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 5b 2d | | [-|
|00002e90| 33 2c 20 33 5d 20 20 20 | 20 20 20 20 20 20 20 20 |3, 3] | |
|00002ea0| 20 20 20 20 28 2d 11 34 | 38 11 31 2c 20 2d 33 5d | (-.4|8.1, -3]|
|00002eb0| 2c 20 5b 33 2c 20 11 34 | 38 11 31 29 0d 0a 00 0d |, [3, .4|8.1)....|
|00002ec0| 0a 00 20 20 20 20 20 0e | 61 33 2d 35 2d 34 33 64 |.. .|a3-5-43d|
|00002ed0| 0e 28 64 29 0f 20 20 4e | 6f 6e 65 20 6f 66 20 74 |.(d). N|one of t|
|00002ee0| 68 65 73 65 0d 0a 00 0d | 0a 00 59 6f 75 20 6d 61 |hese....|..You ma|
|00002ef0| 79 20 77 61 6e 74 20 74 | 6f 20 72 65 76 69 65 77 |y want t|o review|
|00002f00| 20 10 32 2d 33 2d 32 0e | 69 32 2d 33 2d 34 0e 49 | .2-3-2.|i2-3-4.I|
|00002f10| 6e 74 65 67 72 61 74 65 | 64 20 45 78 61 6d 70 6c |ntegrate|d Exampl|
|00002f20| 65 20 34 2e 0f 0d 0a 00 | 14 00 00 00 d3 00 00 00 |e 4.....|........|
|00002f30| 50 00 04 00 14 00 00 00 | 10 00 00 00 33 2d 35 2d |P.......|....3-5-|
|00002f40| 31 35 61 00 eb 00 00 00 | 85 00 00 00 50 00 04 00 |15a.....|....P...|
|00002f50| eb 00 00 00 e7 00 00 00 | 33 2d 35 2d 31 35 62 00 |........|3-5-15b.|
|00002f60| 74 01 00 00 d3 00 00 00 | 50 00 04 00 74 01 00 00 |t.......|P...t...|
|00002f70| 70 01 00 00 33 2d 35 2d | 31 35 63 00 4b 02 00 00 |p...3-5-|15c.K...|
|00002f80| 49 00 00 00 50 00 04 00 | 4b 02 00 00 47 02 00 00 |I...P...|K...G...|
|00002f90| 33 2d 35 2d 31 35 64 00 | 98 02 00 00 31 01 00 00 |3-5-15d.|....1...|
|00002fa0| 50 00 04 00 98 02 00 00 | 94 02 00 00 33 2d 35 2d |P.......|....3-5-|
|00002fb0| 32 33 61 00 cd 03 00 00 | f7 00 00 00 50 00 04 00 |23a.....|....P...|
|00002fc0| cd 03 00 00 c9 03 00 00 | 33 2d 35 2d 32 33 62 00 |........|3-5-23b.|
|00002fd0| c8 04 00 00 32 02 00 00 | 50 00 04 00 c8 04 00 00 |....2...|P.......|
|00002fe0| c4 04 00 00 33 2d 35 2d | 32 33 63 00 fe 06 00 00 |....3-5-|23c.....|
|00002ff0| f7 00 00 00 50 00 04 00 | fe 06 00 00 fa 06 00 00 |....P...|........|
|00003000| 33 2d 35 2d 32 33 64 00 | f9 07 00 00 55 00 00 00 |3-5-23d.|....U...|
|00003010| 50 00 04 00 f9 07 00 00 | f5 07 00 00 33 2d 35 2d |P.......|....3-5-|
|00003020| 32 37 61 00 52 08 00 00 | 95 00 00 00 50 00 04 00 |27a.R...|....P...|
|00003030| 52 08 00 00 4e 08 00 00 | 33 2d 35 2d 32 37 62 00 |R...N...|3-5-27b.|
|00003040| eb 08 00 00 7f 00 00 00 | 50 00 04 00 eb 08 00 00 |........|P.......|
|00003050| e7 08 00 00 33 2d 35 2d | 32 37 63 00 6e 09 00 00 |....3-5-|27c.n...|
|00003060| 36 00 00 00 50 00 04 00 | 6e 09 00 00 6a 09 00 00 |6...P...|n...j...|
|00003070| 33 2d 35 2d 32 37 64 00 | a8 09 00 00 75 00 00 00 |3-5-27d.|....u...|
|00003080| 50 00 04 00 a8 09 00 00 | a4 09 00 00 33 2d 35 2d |P.......|....3-5-|
|00003090| 33 31 61 00 21 0a 00 00 | 43 00 00 00 50 00 04 00 |31a.!...|C...P...|
|000030a0| 21 0a 00 00 1d 0a 00 00 | 33 2d 35 2d 33 31 62 00 |!.......|3-5-31b.|
|000030b0| 68 0a 00 00 75 00 00 00 | 50 00 04 00 68 0a 00 00 |h...u...|P...h...|
|000030c0| 64 0a 00 00 33 2d 35 2d | 33 31 63 00 e1 0a 00 00 |d...3-5-|31c.....|
|000030d0| 36 00 00 00 50 00 04 00 | e1 0a 00 00 dd 0a 00 00 |6...P...|........|
|000030e0| 33 2d 35 2d 33 31 64 00 | 1b 0b 00 00 fa 00 00 00 |3-5-31d.|........|
|000030f0| 50 00 04 00 1b 0b 00 00 | 17 0b 00 00 33 2d 35 2d |P.......|....3-5-|
|00003100| 33 37 61 00 19 0c 00 00 | e5 00 00 00 50 00 04 00 |37a.....|....P...|
|00003110| 19 0c 00 00 15 0c 00 00 | 33 2d 35 2d 33 37 62 00 |........|3-5-37b.|
|00003120| 02 0d 00 00 34 00 00 00 | 50 00 04 00 02 0d 00 00 |....4...|P.......|
|00003130| fe 0c 00 00 33 2d 35 2d | 33 37 63 00 3a 0d 00 00 |....3-5-|37c.:...|
|00003140| 36 00 00 00 50 00 04 00 | 3a 0d 00 00 36 0d 00 00 |6...P...|:...6...|
|00003150| 33 2d 35 2d 33 37 64 00 | 74 0d 00 00 fb 00 00 00 |3-5-37d.|t.......|
|00003160| 50 00 04 00 74 0d 00 00 | 70 0d 00 00 33 2d 35 2d |P...t...|p...3-5-|
|00003170| 33 39 61 00 73 0e 00 00 | fc 00 00 00 50 00 04 00 |39a.s...|....P...|
|00003180| 73 0e 00 00 6f 0e 00 00 | 33 2d 35 2d 33 39 62 00 |s...o...|3-5-39b.|
|00003190| 73 0f 00 00 59 00 00 00 | 50 00 04 00 73 0f 00 00 |s...Y...|P...s...|
|000031a0| 6f 0f 00 00 33 2d 35 2d | 33 39 63 00 d0 0f 00 00 |o...3-5-|39c.....|
|000031b0| 36 00 00 00 50 00 04 00 | d0 0f 00 00 cc 0f 00 00 |6...P...|........|
|000031c0| 33 2d 35 2d 33 39 64 00 | 0a 10 00 00 70 00 00 00 |3-5-39d.|....p...|
|000031d0| 50 00 04 00 0a 10 00 00 | 06 10 00 00 33 2d 35 2d |P.......|....3-5-|
|000031e0| 34 37 61 00 7e 10 00 00 | 51 00 00 00 50 00 04 00 |47a.~...|Q...P...|
|000031f0| 7e 10 00 00 7a 10 00 00 | 33 2d 35 2d 34 37 62 00 |~...z...|3-5-47b.|
|00003200| d3 10 00 00 58 00 00 00 | 50 00 04 00 d3 10 00 00 |....X...|P.......|
|00003210| cf 10 00 00 33 2d 35 2d | 34 37 63 00 2f 11 00 00 |....3-5-|47c./...|
|00003220| 36 00 00 00 50 00 04 00 | 2f 11 00 00 2b 11 00 00 |6...P...|/...+...|
|00003230| 33 2d 35 2d 34 37 64 00 | 69 11 00 00 8b 00 00 00 |3-5-47d.|i.......|
|00003240| 50 00 04 00 69 11 00 00 | 65 11 00 00 33 2d 35 2d |P...i...|e...3-5-|
|00003250| 35 61 00 f8 11 00 00 84 | 00 00 00 50 00 04 00 f8 |5a......|...P....|
|00003260| 11 00 00 f4 11 00 00 33 | 2d 35 2d 35 62 00 80 12 |.......3|-5-5b...|
|00003270| 00 00 69 00 00 00 50 00 | 04 00 80 12 00 00 7c 12 |..i...P.|......|.|
|00003280| 00 00 33 2d 35 2d 35 63 | 00 ed 12 00 00 7c 00 00 |..3-5-5c|.....|..|
|00003290| 00 50 00 04 00 ed 12 00 | 00 e9 12 00 00 33 2d 35 |.P......|.....3-5|
|000032a0| 2d 35 64 00 6d 13 00 00 | ad 00 00 00 50 00 04 00 |-5d.m...|....P...|
|000032b0| 6d 13 00 00 69 13 00 00 | 33 2d 35 2d 37 61 00 1e |m...i...|3-5-7a..|
|000032c0| 14 00 00 ec 00 00 00 50 | 00 04 00 1e 14 00 00 1a |.......P|........|
|000032d0| 14 00 00 33 2d 35 2d 37 | 62 00 0e 15 00 00 7c 00 |...3-5-7|b.....|.|
|000032e0| 00 00 50 00 04 00 0e 15 | 00 00 0a 15 00 00 33 2d |..P.....|......3-|
|000032f0| 35 2d 37 63 00 8e 15 00 | 00 36 00 00 00 50 00 04 |5-7c....|.6...P..|
|00003300| 00 8e 15 00 00 8a 15 00 | 00 33 2d 35 2d 37 64 00 |........|.3-5-7d.|
|00003310| c8 15 00 00 2d 00 00 00 | 50 00 04 00 c8 15 00 00 |....-...|P.......|
|00003320| c4 15 00 00 61 33 2d 35 | 2d 34 33 61 00 f9 15 00 |....a3-5|-43a....|
|00003330| 00 9f 00 00 00 50 00 04 | 00 f9 15 00 00 f5 15 00 |.....P..|........|
|00003340| 00 61 33 2d 35 2d 34 33 | 63 00 9c 16 00 00 2b 00 |.a3-5-43|c.....+.|
|00003350| 00 00 50 00 04 00 9c 16 | 00 00 98 16 00 00 61 33 |..P.....|......a3|
|00003360| 2d 35 2d 34 33 64 00 f1 | 16 00 00 7e 01 00 00 4d |-5-43d..|...~...M|
|00003370| 2a 00 00 c7 16 00 00 00 | 00 00 00 78 32 2d 33 00 |*.......|...x2-3.|
|00003380| 99 18 00 00 e9 01 00 00 | 4d 2a 00 00 6f 18 00 00 |........|M*..o...|
|00003390| 00 00 00 00 78 32 2d 33 | 2d 31 00 ac 1a 00 00 2a |....x2-3|-1.....*|
|000033a0| 02 00 00 4d 2a 00 00 82 | 1a 00 00 00 00 00 00 78 |...M*...|.......x|
|000033b0| 32 2d 33 2d 31 30 00 00 | 1d 00 00 c5 01 00 00 4d |2-3-10..|.......M|
|000033c0| 2a 00 00 d6 1c 00 00 00 | 00 00 00 78 32 2d 33 2d |*.......|...x2-3-|
|000033d0| 32 00 ef 1e 00 00 7c 02 | 00 00 4d 2a 00 00 c5 1e |2.....|.|..M*....|
|000033e0| 00 00 00 00 00 00 78 32 | 2d 33 2d 33 00 95 21 00 |......x2|-3-3..!.|
|000033f0| 00 3d 02 00 00 4d 2a 00 | 00 6b 21 00 00 00 00 00 |.=...M*.|.k!.....|
|00003400| 00 78 32 2d 33 2d 34 00 | fc 23 00 00 4a 01 00 00 |.x2-3-4.|.#..J...|
|00003410| 4d 2a 00 00 d2 23 00 00 | 00 00 00 00 78 32 2d 33 |M*...#..|....x2-3|
|00003420| 2d 35 00 70 25 00 00 c9 | 01 00 00 4d 2a 00 00 46 |-5.p%...|...M*..F|
|00003430| 25 00 00 00 00 00 00 78 | 32 2d 33 2d 36 00 63 27 |%......x|2-3-6.c'|
|00003440| 00 00 3d 02 00 00 4d 2a | 00 00 39 27 00 00 00 00 |..=...M*|..9'....|
|00003450| 00 00 78 32 2d 33 2d 37 | 00 ca 29 00 00 ff 02 00 |..x2-3-7|..).....|
|00003460| 00 4d 2a 00 00 a0 29 00 | 00 00 00 00 00 78 32 2d |.M*...).|.....x2-|
|00003470| 33 2d 38 00 f3 2c 00 00 | 35 02 00 00 4d 2a 00 00 |3-8..,..|5...M*..|
|00003480| c9 2c 00 00 00 00 00 00 | 78 32 2d 33 2d 39 00 |.,......|x2-3-9. |
+--------+-------------------------+-------------------------+--------+--------+